شبکه های بیسیم

Byadmin

امنیت در شبکه های بی سیم

امنیت در شبکه های بی سیم

مهمترین وظیفه یک شبکه کامپیوتری فراهم سازی امکان برقراری ارتباط میان گره های آن در تمام زمانها و شرایط گوناگون است به صورتی که برخی از محققین امنیت در یک شبکه را معادل استحکام و عدم بروز اختلال در آن می دانند. هر چند از زاویه ای این تعریف می تواند درست باشد اما بهتر است اضافه کنیم که امینت در یک شبکه علاوه بر امنیت کارکردی به معنی خصوصی بودن ارتباطات نیز هست. شبکه ای که درست کار کند و مورد حمله ویروسها و عوامل خارجی قرار نگیرد اما در عوض تبادل اطلاعات میان دو نفر در آن توسط دیگران شنود شود ایمن نیست. فرض کنید می خواهید با یک نفر در شبکه تبادل اطلاعات – بصورت email یا chat و… – داشته باشید، در اینصورت مصادیق امنیت در شبکه به این شکل است:

هیچ کس (فرد یا دستگاه) نباید بتواند وارد کامپیوتر شما و دوستتان شود .

تبادل اطلاعات شما را بشنود و یا از آن کپی زنده تهیه کند .

با شبیه سازی کامپیوتر دوست شما، به عنوان او با شما تبادل اطلاعات کند.

کامپیوتر شما یا دوستتان را از کار بیندازد

از منابع کامپیوتر شما برای مقاصد خود استفاده کند.

برنامه مورد علاقه خود – یا یک تکه کد کوچک – را در کامپیوتر شما نصب کند،

در مسیر ارتباطی میان شما و دوستتان اختلال بوجود آورد .

با سوء استفاده از کامپیوتر شما به دیگران حمله کند .

1-7-  مفاهيم امنيت شبکه

امنيت شبکه یا Network Security  پردازه ای است که طی آن یک شبکه در مقابل انواع مختلف تهدیدات داخلی و خارجی امن می شود . مراحل ذیل برای ایجاد امنيت پيشنهاد وتایيد شده اند:

1- شناسایی بخشی که باید تحت محافظت قرار گيرد.

2- تصميم گيری درباره مواردی که باید در مقابل آنها از بخش مورد نظر محافظت کرد.

3- تصميم گيری درباره چگونگی تهدیدات

4- پياده سازی امکاناتی که بتوانند از دار ایی های شما به شيوه ای محافظت کنند که از نظر هزینه به صرفه باشد.

5- مرور مجدد و مداوم پردازه و تقویت آن درصورت یاقتن نقطه ضعف برای تامين امنيت بر روی یک شبکه، یکی از بحرانی ترین و خطيرترین مراحل، تامين امنيت دسترسی وکنترل تجهيزات شبکه است.

امنيت در تجهيزات را ميتوان به دو دسته تقسيم کرد :

–  امنيت فيزیکی

–  امنيت منطقی

1-1-7- امنيت فيزیکی

امنيت فيزیکی بازه وسيعی از تدابير را در بر م یگيرد که استقرار تجهيزات در مکانهای امن و به دور ازخطر حملات نفوذگران و استفاده از افزونگی در سيستم از آن جمل هاند. با استفاده از افزونگی، اطمينان ازصحت عملکرد سيستم در صورت ایجاد و رخداد نقص در یکی از تجهيزات (که توسط عملکرد مشابه سخت افزار و یا سروی سدهنده مشابه جایگزین  میشود) بدست می آید.

در بررسی امنيت فيزیکی و اعمال آن، ابتدا باید به خط رهایی که از این طریق تجهزات شبکه را تهدیدمی کنند نگاهی داشته باشيم. پس از شناخت نسبتاً کامل این خطرها و حمله ها می توان به راه حل ها وترفندهای دفاعی در برابر اینگونه حملات پرداخت.

2-1-7- امنيت منطقی

امنيت منطقی به معنای استفاده از رو شهایی برای پایين آوردن خطرات حملات منطقی و نر مافزاری برضد تجهيزات شبکه است. برای مثال حمله به مسيریاب ها و سوئيچ های شبکه بخش مهمی از این گونه حملات را تشکيل می دهند.

2-7- امنيت در شبکه های بی سيم

از آن جا که شبکه های بی سيم، در دنيای کنونی هرچه بيشتر در حال گسترش هستند، و با توجه به ماهيت این دسته از شبکه ها، که بر اساس سيگنال های رادیویی اند، مهم ترین نکته در راه استفاده از این تکنولوژی، آگاهی از نقاط قوت و ضعف آن ست. نظر به لزوم آگاهی از خطرات استفاده از این شبکه ها، با وجود امکانات نهفته در آن ها که به مدد پيکربندی صحيح م یتوان به سطح قابل قبولی از بعد امنيتی دست یافت،ضمن معرفی ” امنيت در شبکه های بی سيم ” بنا داریم در این سری از مقالات با عنوان این شبکه ها با تأکيد بر ابعاد امنيتی آن ها، به روش های پيکربندی صحيح که احتمال رخ داد حملات را کاهش می دهند بپردازیم.

3-7- منشأ ضعف امنيتی در شبکه های بی سيم و خطرات معمول

خطر معمول در کلي هی شبکه های بی سيم مستقل از پروتکل و تکنولوژی مورد نظر، برمزیت اصلی این تکنولوژی که همان پویایی ساختار، مبتنی بر استفاده از سيگنال های رادیویی به جای سيم و کابل، استوار است. با استفاده از این سيگنال ها و در واقع بدون مرز ساختن پوشش ساختار شبکه، نفوذگران قادرند در صورت شکستن موانع امنيتی نه چندان قدرتمند این شبکه ها، خود را به عنوان عضوی از این شبکه ها جازده و در صورت تحقق این امر، امکان دست یابی به اطلاعات حياتی، حمله به سرویس دهنده گان سازمان و مجموعه، تخریب اطلاعات، ایجاد اختلال در ارتباطات گره های شبکه با یکدیگر، توليد داده های غيرواقعی و گمراه کننده، سوءاستفاده از پهنای باند مؤثر شبکه و دیگرفعاليت های مخرب وجود دارد.

در مجموع، در تمامی دست ههای شبکه های بی سيم، از دید امنيتی حقایقی مشترک صادق است  :تمامی ضعف های امنيتی موجود در شبک ههای سيمی، در مورد شبکه های بی سيم نيز صدق م یکند. در واقع نه تنها هيچ جنبه یی چه از لحاظ طراحی و چه از لحاظ ساختاری، خاص شبکه های بی سيم وجود ندارد که سطح بالاتری از امنيت منطقی را ایجاد کند، بلکه همان گونه که ذکر شد مخاطرات ویژه یی را نيز موجب است.

  • نفوذگران، با گذر از تدابير امنيتی موجود، م یتوانند به راحتی به منابع اطلاعاتی موجود بر روی سيستم های رایانه یی دست یابند.
  • اطلاعات حياتی ای که یا رمز نشده اند و یا با روشی با امنيت پایين رمزشده اند، و ميان دو گره در شبکه های بی سيم در حال انتقال م یباشند، می توانند توسط نفوذگران سرقت شده یا تغيير یابند.
  • حمله های DoSبه تجهيزات و سيست مهای بی سيم بسيار متداول است.
  • نفوذگران با سرقت کدهای عبور و دیگر عناصر امنيتی مشابه کاربران مجاز در شبکه های بی سيم، می توانند به شبکه ی مورد نظر بدون هيچ مانعی متصل گردند.
  • با سرقت عناصر امنيتی، یک نفوذگر می تواند رفتار یک کاربر را پایش کند. از این طریق می توان به اطلاعات حساس دیگری نيز دست یافت.
  • کامپيوترهای قابل حمل و جيبی، که امکان و اجازه ی استفاده ازشبکه ی بی سيم را دارند، به راحتی قابل سرقت هستند. با سرقت چنين سخت افزارهایی، می توان اولين قدم برای نفوذ به شبکه را برداشت.
  • یک نفوذگر می تواند از نقاط مشترک ميان یک شبکه ی بی سيم در یک سازمان و شبک هی سيمی آن (که در اغلب موارد شبکه ی اصلی و حساس تری محسوب می گردد) استفاده کرده و با نفوذ به شبکه ی بی سيم عملاً راهی برای دست یابی به منابع شبکه ی سيمی نيز بيابد.
  • در سطحی دیگر، با نفوذ به عناصر کنترل کننده ی یک شبک هی بی سيم،امکان ایجاد اختلال در عمل کرد شبکه نيز وجود دارد.

همان گونه که گفته شد، اغلب شبکه های محلی بی سيم بر اساس ساختار فوق، که به نوع Infrastructure نيز موسوم است، پياده سازی می شوند. با این وجود نوع دیگری از شبکه های محلی بی سيم نيز وجود دارند که از همان منطق نقطه به نقطه استفاده می کنند. در این شبکه ها که عموماً Ad hoc ناميده می شوند یک نقطه ی مرکزی برای دسترسی وجود ندارد و سخت افزارهای همراه – مانند کامپيوترهای کيفی و جيبی یاگوشی های موبایل – با ورود به محدوده ی تحت پوشش این شبکه، به دیگر تجهيزات مشابه متصل می گردند. این شبکه ها به بستر شبکه ی سيمی متصل نيستند و به همين منظور IBSS (Independent Basic Service Set) نيز خوانده میشوند.

شکل 1-7- شبکه های Ad hoc

شبکه های Ad hoc سویی مشابه شبکه های محلی درون دفتر کار هستند که در آنها نيازی به تعریف و پيکربند ی یک سيستم رایانه یی به عنوان خادم وجود ندارد. در این صورت تمامی تجهيزات متصل به این شبکه می توانند پرونده های مورد نظر خود را با دیگر گره ها به اشتراک بگذارند.

4-7- امنيت در شبکه های محلی بر اساس استاندارد 802.11

با طرح قابليت های امنيتی این استاندارد، می توان از محدودیت های آن آگاه شد و این استاندارد و کاربرد را برای موارد خاص و مناسب مورد استفاده قرار داد.

استاندارد 802.11 سرویس های مجزا و مشخصی را برای تأمين یک محيط امن بی سيم در اختيار قرار می دهد. این سرویس ها اغلب توسط پروتکل WEP(Equivalent Privacy Wired)  تأمين می گردند و وظيفه ی آن ها امن سازی ارتباط ميان مخدوم ها ونقاط دسترسی بی سيم است. درک لایه یی که این پروتکل به امن سازی آن می پردازد اهميت ویژه یی دارد، به عبارت دیگر این پروتکل کل ارتباط را امن نکرده و به لایه های دیگر، غير از لایه ی ارتباطی بی سيم که مبتنی بر استاندارد 802.11 است، کاری ندارد. این بدان معنی است که استفاده از WEP در یک شبکه ی بی سيم به معنی استفاده از قابليت درونی استاندارد شبکه های محلی بی سيم است و ضامن امنيت کل ارتباط نيست زیرا امکان قصور از دیگر اصول امنيتی در سطوح بالاتر ارتباطی وجود دارد.

شکل 2-7- محدوده ی عملکرد استاندارد امنیتی 802.11

5-7- قابليت ها و ابعاد امنيتی استاندارد 802.11

در حال حاضر عملاً تنها پروتکلی که امنيت اطلاعات و ارتباطات را در شبکه های بی سيم بر اساس استاندارد 802.11 فراهم می کند WEPاست. این پروتکل با وجود قابليت هایی که دارد، نوع استفاده از آن همواره امکان نفوذ به شبکه های بی سيم را به نحوی، ولو سخت و پيچيده، فراهم م یکند. نکته یی که باید به خاطر داشت این ست که اغلب حملات موفق صورت گرفته در مورد شبک ههای محلی بی سيم، ریشه در پيکربندی ناصحيح WEP در شبکه دارد. به عبارت دیگر این پروتکل در صورت پيکربندی صحيح درصد بالایی از حملات را ناکام می گذارد، هرچند که فی نفسه دچار نواقص و ایرادهایی نيزهست.

بسياری از حملاتی که بر روی شبکه های بی سيم انجام می گيرد از سویی است که نقاط دسترسی با شبکه ی سيمی دارای اشتراک هستند. به عبارت دیگر نفوذگران بعضاً با استفاده از راه های ارتباطی دیگری که بر روی مخدوم ها و سخت افزارهای بی سيم، خصوصاً مخدوم های بی سيم، وجود دارد، به شبکه ی بی سيم نفوذ می کنند که این مقوله نشان دهنده ی اشتراکی هرچند جزءیی ميان امنيت در شبکه های سيمی وبی سيم یی ست که از نظر ساختاری و فيزیکی با یکدیگر اشتراک دارند.

سه قابليت و سرویس پایه توسط IEEE برای شبک ههای محلی بی سيم تعریف می گردد :

Authentication ·

هدف اصلی WEP ایجاد امکانی برای احراز هویت مخدوم بی سيم است. این عمل که در واقع کنترل دسترسی به شبکه ی بی سيم است. این مکانيزم سعی دارد که امکان اتصال مخدوم هایی را که مجاز نيستند به شبکه متصل شوند از بين ببرد.

Confidentiality ·

محرمانگی هدف دیگر WEP است . این بُعد از سرویس ها و خدمات WEP  با هدف ایجاد امنيتی در حدود سطوح  شبکه های سيمی طراحی شده است. سياست این بخش از WEPجلوگيری از سرقت اطلاعات در حال انتقال بر روی شبکه ی محلی بی سيم است.

Integrity ·

هدف سوم از سرویس ها و قابليت های WEPطراحی سياستی است که تضمين کند پيام ها و اطلاعات در حال تبادل در شبکه، خصوصاً ميان مخدومهای بی سيم و نقاط دسترسی، در حين انتقال دچار تغيير نمیگردند. این قابليت درتمامی استانداردها، بسترها و شبک ههای ارتباطاتی دیگر نيز کم وبيش وجود دارد.

نکته ی مهمی که در مورد سه سرویس WEP وجود دارد نبود سرویس های معمول Authorization  و Auditingدر ميان سرویس های ارایه شده توسط این پروتکل است .

6-7- ضعف های اوليه ی امنيتی WEP

در قسمت های قبل به سرویس های امنيتی استاندارد 802.11 پرداختيم . در ضمنِ ذکر هریک از سرویس ها، سعی کردیم به ضعف های هریک اشاره یی داشته باشيم . در این قسمت به بررسی ضعف های تکنيک های امنيتی پایه ی استفاده شده در این استاندارد می پردازیم.

همان گونه که گفته شد، عملاً پایه ی امنيت در استاندارد 802.11 بر اساس پروتکل WEP استوار است WEP در حالت استاندارد بر اساس کليدهای ۴٠ بيتی برای رمزنگاری توسط الگوریتم RC 4 استفاده می شود، هرچند که برخی از توليدکننده گان نگارش های خاصی از WEPرا با کليدهایی با تعداد بيت های بيش تر پياده سازی کرده اند.

نکته ای که در این ميان اهميت دارد قائل شدن تمایز ميان نسبت بالارفتن امنيت واندازه ی کليدهاست . با وجود آن که با بالارفتن اندازه ی کليد (تا ١٠۴ بيت ) امنيت بالاترمی رود، ولی از آن جاکه این کليدها توسط کاربران و بر اساس یک کلمه ی عبور تعيين می شود، تضمينی نيست که این اندازه تماماً استفاده شود . از سوی دیگر همان طور که درقسمت های پيشين نيز ذکر شد، دست یابی به این کليدها فرایند چندان سختی نيست، که در آن صورت دیگر اندازه ی کليد اهميتی ندارد.

متخصصان امنيت بررسی های بسياری را برای تعيين حفره های امنيتی این استاندارد انجام داده اند که در این راستا خطراتی که ناشی از حملاتی متنوع، شامل حملات غيرفعال و فعال است، تحليل شده است.

حاصل بررسی های انجام شده فهرستی از ضعف های اوليه ی این پروتکل است :

١. استفاده از کليدهای ثابت WEP

یکی از ابتدایی ترین ضعف ها که عموماً در بسياری از شبکه های محلی بی سيم وجود دارد استفاده از کليدهای مشابه توسط کاربران برای مدت زمان نسبتاً زیاد است . این ضعف به دليل نبود یک مکانيزم مدیریت کليد رخ می دهد. برای مثال اگر یک کامپيوتر کيفی یا جيبی که از یک کليد خاص استفاده می کند به سرقت برود یا برای مدت زمانی در دسترس نفوذگر باشد، کليد آن به راحتی لو رفته و با توجه به تشابه کليد ميان بسياری از ایستگاه های کاری عملاً استفاده از تمامی این ایستگاه ها ناامن است.از سوی دیگر با توجه به مشابه بودن کليد، در هر لحظه کانال های ارتباطی زیادی توسط یک حمله نفوذپذیر هستند.

٢ Initialization Vector (IV) .

این بردار که یک فيلد ٢۴ بيتی است در قسمت قبل معرفی شده است . این بردار به صورت متنی ساده فرستاده می شود . از آن جایی که کليدی که برای رمزنگاری مورد استفاده قرار می گيرد بر اساس IV توليد می شود، محدوده ی IVعملاً نشان دهنده ی احتمال تکرار آن و در نتيجه احتمال توليد کليدهای مشابه است . به عبارت دیگر در صورتی که IVکوتاه باشد در مدت زمان کمی می توان به کليدهای مشابه دست یافت.

این ضعف در شبکه های شلوغ به مشکلی حاد مبدل می شود . خصوصاً اگر از کارت شبکه ی استفاده شده مطمئن نباشيم . بسياری از کارت های شبکه از IV های ثابت استفاده می کنند و بسياری از کارت های شبکه ی یک توليد کننده ی واحد IVهای مشابه دارند. این خطر به همراه ترافيک بالا در یک شبکه ی شلوغ احتمال تکرار IVدر مدت زمانی کوتاه را بالاتر می برد و در نتيجه کافی ست نفوذگر در مدت زمانی معين به ثبت داده های رمز شده ی شبکه بپردازد و IVهای بسته های اطلاعاتی را ذخيره کند . با ایجاد بانکی از IVهای استفاده شده در یک شبکه ی شلوغ احتمال بالایی برای نفوذ به آن شبکه در مدت زمانی نه چندان طولانی وجود خواهد داشت.

٣. ضعف در الگوریتم

از آن جایی که IV در تمامی بسته های تکرار می شود و بر اساس آن کليد توليد می شود، نفوذگر می تواند با تحليل و آناليز تعداد نسبتاً زیادی از IVها و بسته های رمزشده بر اساس کليد توليد شده بر مبنای آن IV به کليد اصلی دست پيدا کند . این ، فرایند عملی زمان بر است ولی از آن جاکه احتمال موفقيت در آن وجود دارد لذا به عنوان ضعفی برای این پروتکل محسوب می گردد.

۴. استفاده از CRC رمز نشده

در پروتکل WEP، کد  CRCرمز نمی شود . لذا بسته های تأیيدی که از سوی نقاط دسترسی بی سيم به سوی گيرنده ارسال می شود بر اساس یک CRCرمزنشده ارسال می گردد و تنها در صورتی که نقطه ی دسترسی از صحت بسته اطمينان حاصل کند تأیيدآن را می فرستد. این ضعف این امکان را فراهم می کند که نفوذگر برای رمزگشایی یک بسته، محتوای آن را تغيير دهد و CRCرا نيز به دليل این که رمز نشده است، به راحتی عوض کند و منتظر عکس العمل نقطه ی دسترسی بماند که آیا بسته ی تأیيد را صادر میکند یا خير.

ضعف های بيان شده از مهم ترین ضعف های شبکه های بی سيم مبتنی بر پروتکل WEP هستند. نکته یی که در مورد ضعف های فوق باید به آن اشاره کرد این است که در ميان این ضعف ها تنها یکی از آن ها (مشکل امنيتی سوم ) به ضعف در الگوریتم رمزنگاری بازمی گردد و لذا با تغيير الگوریتم رمزنگاری تنها این ضعف است که برطرف می گردد و بقيه ی مشکلات امنيتی کماکان به قوت خود باقی هستند.

 

7-7- خطرها، حملات و ملزومات امنيتی

همان گونه که گفته شد، با توجه به پيشرفت های اخير، در آینده ای نه چندان دور باید منتظر گستردگی هرچه بيش تر استفاده از شبکه های بی سيم باشيم. این گستردگی، با توجه به مشکلاتی که از نظر امنيتی در این قبيل شبکه ها وجود دارد نگرانی هایی را نيز به همراه دارد. این نگرانی ها که نشان دهنده ی ریسک بالای استفاده از این بستر برای سازمان ها و شرکت های بزرگ است، توسعه ی این استاندارد را در ابهام فرو برده است. در این قسمت به دسته بندی و تعریف حملات،خطرها و ریسک های موجود در استفاده از شبکه های محلی بی سيم بر اساس استاندارد IEEE 802.11x می پردازیم.

مطابق درخت فوق، حملات امنيتی به دو دسته ی فعال و غيرفعال تقسيم می گردند.

حملات غيرفعال

در این قبيل حملات، نفوذگر تنها به منبعی از اطلاعات به نحوی دست می یابد ولی اقدام به تغيير محتوال اطلاعات منبع نمی کند. این نوع حمله می تواند تنها به یکی از اشکال شنود ساده یا آناليز ترافيک باشد.

– شنود

در این نوع، نفوذگر تنها به پایش اطلاعات ردوبدل شده می پردازد. برای مثال شنود ترافيک روی یک شبکه ی محلی یا یک شبکه ی بی سيم (که مد نظر ما است) نمونه هایی از این نوع حمله به شمار می آیند.

–  آناليز ترافيک

در این نوع حمله، نفوذگر با کپی برداشتن از اطلاعات پایش شده، به تحليل جمعی داده ها می پردازد. به عبارت دیگر بسته یا بسته های اطلاعاتی به همراه یکدیگر اطلاعات معناداری را ایجاد می کنند.

 

 

 

حملات فعال

در این نوع حملات، برخلاف حملات غيرفعال، نفوذگر اطلاعات مورد نظر را، که از منابع به دست می آید، تغيير می دهد، که تبعاً انجام این تغييرات مجاز نيست. از آن جایی که در این نوع حملات اطلاعات تغيير می کنند، شناسایی رخ داد

حملات فرایندی امکان پذیراست. در این حملات به چهار دسته ی مرسوم زیر تقسيم بندی می گردند :

– تغيير هویت

در این نوع حمله، نفوذگر هویت اصلی را جعل می کند. این روش شامل تغيير هویت اصلی یکی از طرف های ارتباط یا قلب هویت و یا تغيير جریان واقعی فرایند پردازش اطلاعات نيز می گردد.

– پاسخ های جعلی

نفوذگر در این قسم از حملات، بسته هایی که طرف گيرنده ی اطلاعات در یک ارتباط دریافت می کند را پایش می کند. البته برای اطلاع از کل ماهيت ارتباط یک اتصال از ابتدا پایش می گردد ولی اطلاعات مفيد تنها اطلاعاتی هستند که از سوی گيرنده برای فرستنده ارسال می گردند. این نوع حمله بيش تر در مواردی کاربرد دارد که فرستنده اقدام به تعيين هویت گيرنده می کند. در این حالت بسته های پاسخی که برای فرستنده به عنوان جواب به سؤالات فرستنده ارسال می گردند به معنای پرچمی برای شناسایی گيرنده محسوب می گردند. لذا در صورتی که نفوذگر این بسته ها را ذخيره کند و در زمانی که یا گيرنده فعال نيست، یا فعاليت یا ارتباط آن به صورت آگاهانه –به روشی-توسط نفوذگر قطع شده است ، می تواند مورد سوء استفاده قرار گيرد. نفوذگر با ارسال مجدد این بسته ها خود را به جای گيرنده جا زده و از سطح دسترسی مورد نظر برخوردار می گردد.

– تغيير پيام

در برخی از موارد مرسوم ترین و متنوع ترین نوع حملات فعال تغيير پيام است. از آن جایی که گونه های متنوعی از ترافيک بر روی شبکه رفت وآمد می کنند و هریک از این ترافيک ها و پروتکل ها از شيوه ای برای مدیریت جنبه های امنيتی خود استفاده می کنند، لذا نفوذگر با اطلاع از پروتکل های مختلف می تواند برای هر یک از این انواع ترافيک نوع خاصی از تغيير پيام ها و در نتيجه حملات را اتخاذ کند. با توجه به گسترده گی این نوع حمله، که کاملاً به نوع پروتکل بسته گی دارد، در این جا نمی توانيم به انواع مختلف آن بپردازیم، تنها به یادآوری این نکته بسنده می کنيم که این حملات تنها دست یابی به اطلاعات را هدف نگرفته است و می تواند با اعمال تغييرات خاصی، به گمراهی دو طرف منجر شده و مشکلاتی را برای سطح مورد نظر دسترسی که می تواند یک کاربر عادی باشد فراهم کند.

– حمله های DoS (Denial-of-Service )

این نوع حمله، در حالات معمول، مرسوم ترین حملات را شامل می شود. در این نوع حمله نفوذگر یا حمله کننده برای تغيير نحوه ی کارکرد یا مدیریت یک سامانه ی ارتباطی یا اطلاعاتی اقدام می کند. ساده ترین نمونه سعی در از کارانداختن خادم های نرم افزاری و سخت افزاری ست. پيرو چنين حملاتی، نفوذگر پس از از کارانداختن یک سامانه، که معمولاً سامانه ای ست که مشکلاتی برای نفوذگر برای دسترسی به اطلاعات فراهم کرده است، اقدام به سرقت، تغيير یا نفوذ به منبع اطلاعاتی می کند. در برخی از حالات، در پی حمله ی انجام شده، سرویس مورد نظر به طور کامل قطع نمی گردد و تنها کارایی آن مختل می گردد. در این حالت نفوذگر می تواند با سوءاستفاده از اختلال ایجاد شده به نفوذ از طریق/ به همان سرویس نيز اقدام کند.

8-7- هفت مشکل امنيتی مهم شبکه های بی سيم 802.11

موفقيت حيرت انگيز 802.11 به علت توسعه ” اترنت بی سيم “است. همچنانکه 802.11 به ترقی خود ادامه می دهد، تفاوت هایش با اترنت بيشتر مشخص می شود. بيشتر این تفاوت ها به دليل نا آشنایی نسبی بسياری از مدیران شبکه با لایه فيزیکی فرکانس رادیویی است. در حاليکه همه مدیران شبکه باید درک پایه ای از لينک رادیویی داشته باشند، تعدادی از ابزارها برای کمک به آنها به خدمت گرفته می شوند. آنالایزرهای (تحليل کننده ) شبکه های بی سيم برای مدت ها ابزاری لازم برای مهندسان شبکه در اشکال زدایی و تحليل پروتکل بوده اند. بسياری از آنالایزرها بعضی کارکردهای امنيتی را نيز اضافه کرده اند که به آنها اجازه کار با عملکردهای بازرسی امنيتی را نيز می دهد.

در این سلسله مقاله هفت مشکل از مهم ترین آسيب پذیری های امنيتی موجود در LANهای بی سيم، راه حل آنها و در نهایت چگونگی ساخت یک شبکه بی سيم امن  مورد بحث قرار می گيرد. بسياری از پرسش ها در این زمينه در مورد ابزارهایی است که مدیران شبکه می توانند استفاده کنند. یک آنالایزر از اولين خریدهایی است که یک مدیر شبکه باید انجام دهد. آنالایزرها علاوه بر عملکردهای سنتی تحليل پروتکل و ابزار تشخيص عيب، می توانند برای تشخيص بسياری از نگرانی های امنيتی که استفاده ازهفت » شبکه بی سيم را کند می کنند، استفاده شوند.

مسأله شماره ١: دسترسی آسان

LAN های بی سيم به آسانی پيدا می شوند. برای فعال کردن کلاینت ها در هنگام یافتن آنها، شبکه ها باید فریم های

Beacon با پارامتر های شبکه را ارسال کنند. البته، اطلاعات مورد نياز برای پيوستن به یک شبکه، اطلاعاتی است که برای اقدام به یک حمله روی شبکه نياز است. فریم های Beacon توسط هيچ فانکشن اختصاصی پردازش نمی شوند و این به این معنی است که شبکه 802.11 شما و پارامترهایش برای هر شخصی با یک کارت 802.11 قابل استفاده است. نفوذگران با آنتن های قوی می توانند شبکه ها را در مسيرها یا ساختمان های نزدیک بيابند و ممکن است اقدام به انجام حملاتی کنند حتی بدون اینکه به امکانات شما دسترسی فيزیکی داشته باشند.

راه حل شماره ١: تقویت کنترل دسترسی قوی

دسترسی آسان الزاماً با آسيب پذیری مترادف نيست. شبکه های بی سيم برای ایجاد امکان اتصال مناسب طراحی شده اند، اما می توانند با اتخاذ سياستهای امنيتی مناسب تا حد زیادی مقاوم شوند. یک شبکه بی سيم می تواند تا حد زیادی در این اتاق محافظت شده از نظر الکترومغناطيس محدود شود که اجازه نشت سطوح بالایی از فرکانس رادیویی را نمی دهد. به هرحال، برای بيشتر موسسات چنين برد هایی لازم نيستند.

تضمين اینکه شبکه های بی سيم تحت تأثير کنترل دسترسی قوی هستند، می تواند از خطر سوءاستفاده از شبکه بی سيم بکاهد.تضمين امنيت روی یک شبکه بی سيم تا حدی به عنوان بخشی از طراحی مطرح است. شبکه ها باید نقاط دسترسی را در بيرون ابزار پيرامونی امنيت مانند فایروال ها قرار دهند و مدیران شبکه باید به استفاده از VPN ها برای ميسر کردن دسترسی به شبکه توجه کنند. یک سيستم قوی تأیيد هویت کاربر باید به کار گرفته شود و ترجيحاً با استفاده از محصولات جدید که برپایه استاندارد IEEE 802.1x هستند. 802.1 x انواع فریم های جدید برای تأیيد هویت کاربر را تعریف می کند و از دیتابيس های کاربری جامعی مانند RADIUS بهره می گيرد. آنالایزرهای باسيم سنتی می توانند با نگاه کردن به تقاضاهای RADIUS و پاسخ ها، امکان درک پروسه تأیيد هویت را فراهم کنند. یک سيستم آناليز خبره برای تأیيد هویت 802.11 شامل یک روتين عيب یابی مشخص برای  LAN  هاست که ترافيک تأیيد هویت را نظاره می کند و امکان تشخيص عيب را برای مدیران شبکه فراهم می کند که به آناليز بسيار دقيق و کدگشایی فریم احتياج ندارد. سيستم های آناليز خبره که پيام های تأیيد هویت802.1 x را دنبال می کنند، ثابت کرده اند که برای استفاده در LAN های استفاده کننده از802.1 x فوق العاده باارزش هستند. هرگونه طراحی، بدون در نظر گرفتن ميزان قدرت آن، باید مرتباً بررسی شود تا سازگاری چينش فعلی را با اهداف امنيتی طراحی تضمين کند. بعضی موتورهای آناليز تحليل عميقی روی فریم ها انجام می دهند و می توانند چندین مسأله معمول امنيت802.1 x را  تشخيص دهند. تعدادی از حملات روی شبکه های باسيم در سال های گذشته شناخته شده اند و لذا وصله های فعلی به خوبی تمام ضعف های شناخته شده را در این گونه شبکه ها نشان می دهند. آنالایزرهای خبره پياده سازی های ضعيف را برای مدیران شبکه مشخص می کنند و به این ترتيب مدیران شبکه می توانند با به کارگيری سخت افزار و نرم افزار ارتقاء یافته، امنيت شبکه را حفظ کنند.پيکربندی های نامناسب ممکن است منبع عمده آسيب پذیری امنيتی باشد، مخصوصاً اگر LANهای بی سيم بدون نظارت مهندسان امنيتی به کارگرفته شده باشند. موتورهای آناليز خبره می توانند زمانی را که پيکربندی های پيش فرض کارخانه مورد استفاده قرارمی گيرند، شناسایی کنند و به این ترتيب می توانند به ناظران کمک کنند که نقاطی از دسترسی را که بمنظور استفاده از ویژگی های امنيتی پيکربندی نشده اند، تعيين موقعيت کنند. این آنالایزرها همچنين می توانند هنگامی که وسایلی از ابزار امنيتی قوی مانند VPN ها یا  802.1 xاستفاده نمی کنند، علائم هشدار دهنده را ثبت کنند.

مسأله شماره ٢: نقاط دسترسی نامطلوب

دسترسی آسان به شبکه های LAN  بی سيم امری منفک از راه اندازی آسان آن نيست.  این دو خصوصيت در هنگام ترکيب شدن با یکدیگر می توانند برای مدیران شبکه و مسوولان امنيتی ایجاد دردسر کنند. هر کاربر می تواند به فروشگاه کامپيوتر نزدیک خود برود، یک نقطه دسترسی! بخرد و بدون کسب اجازه ای خاص به کل شبکه متصل شود. بسياری از نقاط دسترسی با اختيارات مدیران ميانی عرضه می شوند و لذا دپارتمان ها ممکن است بتوانند LAN بی سيمشان را بدون صدور اجازه از یک سازمان IT مرکزی در بکارگرفته شده توسط ” نامطلوب ” معرض عموم قرار دهند. این دسترسی به اصطلاح کاربران ، خطرات امنيتی بزرگی را مطرح می کند. کاربران در زمينه امنيتی خبره نيستند و ممکن است از خطرات ایجاد شده توسط LAN های بی سيم آگاه نباشند. ثبت بسياری از  ورودها به شبکه نشان از آن دارد که ویژگی های امنيتی فعال نيستند و بخش بزرگی از آنها تغييراتی نسبت به پيکربندی پيش فرض نداشته اند و با همان پيکربندی راه اندازی شده اند.

راه حل شماره ٢ : رسيدگی های منظم به سایت

مانند هر تکنولوژی دیگر شبکه، شبکه های بی سيم به مراقبت از سوی مدیران امنيتی نياز دارند. بسياری از این تکنولوژی ها به دليل سهولت استفاده مورد بهره برداری نادرست قرار می گيرند، لذا آموختن نحوه یافتن شبکه های امن نشده ازاهميت بالایی برخوردار است.استفاده از یک آنتن و جستجوی آنها به این منظور که بتوانيد قبل از نفوذگران این شبکه ها را پيدا کنيد. نظارت های فيزیکی سایت باید به صورت مرتب و در حد امکان انجام گيرد.اگرچه هرچه نظارت ها سریع تر انجام گيرد، امکان کشف استفاده های غيرمجاز بيشتر است، اما زمان زیادی که کارمندان مسوول این امر باید صرف کنند، کشف تمامی استفاده های غيرمجاز را بجز برای محيط های بسيار حساس، غيرقابل توجيه می کند. یک راهکار برای عدم امکان حضور دائم می تواند انتخاب ابزاری در اندازه دستی باشد. این عمل می تواند استفاده تکنسين ها از اسکنرهای دستی در هنگام انجام امور پشتيبانی کاربران، برای کشف شبکه های غيرمجاز باشد.

یکی از بزرگترین تغييرات در بازار 802.11 در سال های اخير ظهور 802.11 a به عنوان یک محصول تجاری قابل دوام بود. این موفقيت نياز به ارائه ابزارهایی برای مدیران شبکه های802.11 a را بوجود آورد. خوشبختانه 802.11 a از همان MAC پيشينيان خود استفاده می کند، بنابراین بيشتر آنچه مدیران راجع به 802.11 و تحليل کننده ها می دانند، بدرد می خورد. مدیران شبکه باید دنبال محصولی سازگار باشند که هر دو استاندارد  802.11 aو 802.11 bرا بصورت یکجا و ترجيحاً به صورت همزمان پشتيبانی کند. چيپ ست های دوباندی 802.11 a/b و کارت های ساخته شده با آنها به آنالایزرها اجازه می دهد که روی هر دو باند بدون تغييرات سخت افزاری کار کنند، و این بدین معنی است که مدیران شبکه نياز به خرید و آموزش فقط یک چارچوپ پشتيبانی شده برای هر دو استاندارد دارند. این روال باید تا 802.11 g ادامه یابد، تا جایی که سازندگان آنالایزرها کارت های 802.11 a/b/g را مورد پذیرش قرار دهند.بسياری از ابزارها می توانند برای انجام امور رسيدگی به سایت و ردیابی نقاط دسترسی نامطلوب استفاده شوند، اما مدیران شبکه باید از نياز به همگامی با آخرین تکنيک های استفاده شده در این بازی موش و گربه! آگاه باشند. نقاط دسترسی می توانند در هر باند فرکانسی تعریف شده در 802.11 بکارگرفته شوند، بنابراین مهم است که تمام ابزارهای مورد استفاده در بررسی های سایت بتوانند کل محدوده فرکانسی را پویش کنند. حتی اگر شما استفاده از b  802.11 را انتخاب کرده اید، آنالایزر استفاده شده برای کار نظارت بر سایت، باید بتواند همزمان نقاط دسترسی802.11 a  را نيز پویش کند تا در طول یک بررسی کامل نيازی به جایگزین های سخت افزاری و نرم افزاری نباشد.بعضی نقاط دسترسی نامطلوب سعی دارند کانالهایی را به صورت غيرقانونی روی کانال های 802.11 b به کار بگيرند که برای ارسال استفاده نمی شوند. برای مثال قوانين FCC تنها اجازه استفاده از کانال های ١ تا ١١ از 802.11 bرا می دهد. کانال های ١٢ تا ١۴ جزء مشخصات آن تعریف شده اند اما فقط برای استفاده در اروپا و ژاپن کاربرد دارند. به هرحال، بعضی کاربران ممکن است از نقطه دسترسی کانال های اروپایی یا ژاپنی استفاده کنند، به این اميد که رسيدگی یک سایت متمرکز روی کانال های مطابق با FCC  از کانال های فرکانس بالاتر چشم پوشی کند. این قضيه مخصوصاً برای ردیابی ابزارهایی اهميت دارد که بيرون باند فرکانسی مجاز بکارگرفته شده اند تا از اعمال اجرایی اتخاذ شده توسط نمایندگی های مجاز برحذر باشند. آنالایزرهای غيرفعال (Passive Analyzers) ابزار ارزشمندی هستند زیرا استفاده های غيرمجاز را تشخيص می دهند، اما چون توانی ارسال نمی کنند استفاده از آنها قانونی است.مدیران شبکه همواره تحت فشار زمانی هستند، و به روش آسانی برای یافتن نقاط دسترسی نامطلوب و در عين حال چشم پوشی از نقاط دسترسی مجاز نياز دارند. موتورهای جستجوی خبره به مدیران اجازه می دهند که ليستی از نقاط دسترسی مجاز را پيکربندی کنند. هر نقطه دسترسی غيرمجاز باعث توليد علامت هشدار دهنده ای می شود. در پاسخ به علامت هشدار دهنده، مدیران شبکه می توانند از ابزار دیگری برای پيدا کردن نقطه دسترسی براساس مقياس های قدرت سيگنال استفاده کنند. اگرچه این ابزارها ممکن است خيلی دقيق نباشند، ولی برای محدود کردن محوطه جستجوی نقطه دسترسی نامطلوب به اندازه کافی مناسب هستند.

مسأله شماره ٣: استفاده غيرمجاز از سرویس

چندین شرکت مرتبط با شبکه های بی سيم نتایجی منتشر کرده اند که نشان می دهد اکثر نقاط دسترسی با تنها تغييرات مختصری نسبت به پيکربندی اوليه برای سرویس ارائه می گردند. تقریباً تمام نقاط دسترسی که با پيکربندی پيش فرض مشغول به ارائه سرویس هستند WEP (Wired Equivalent Privacy) را فعال نکرده اند یا یک کليد پيش فرض دارند که توسط تمام توليدکنند گان محصولات استفاده می شوند. بدون WEP دسترسی به شبکه به راحتی ميسر است. دو مشکل به دليل این دسترسی باز می تواند بروز کند: کاربران غيرمجاز لزوماً از مفاد ارائه سرویس تبعيت نمی کنند، و نيز ممکن است تنها توسط یک اسپم ساز اتصال شما به ISPتان لغو شود.

راه حل شماره ٣ : طراحی و نظارت برای تأیيد هویت محکم

راه مقابله مشخص با استفاده غيرمجاز، جلوگيری از دسترسی کاربران غيرمجاز به شبکه است. تأیيد هویت محکم و محافظت شده توسط رمزنگاری یک پيش شرط برای صدور اجازه است، زیرا امتيازات دسترسی برپایه هویت کاربر قرار دارند. روش های VPNکه برای  حفاظت از انتقال در لينک رادیویی به کارگرفته می شوند، تأیيد هویت محکمی را ارائه می کنند. تخمين مخاطرات انجام شده توسط سازمان ها نشان می دهد که دسترسی به 802.1 x باید توسط روش های تأیيد هویت برپایه رمزنگاری تضمين شود. از جمله این روش ها می توان به TLS (Layer Security Transport) ، TTLS(Tunneled Layer Security Transport ) یا  PEAP (Protected Extensible Authentication Protocol) اشاره کرد.

هنگامی که یک شبکه با موفقيت راه اندازی می شود، تضمين تبعيت از سياست های تایيد هویت و اعطای امتياز مبتنی بر آن حياتی است. همانند مسأله نقاط دسترسی نامطلوب، در این راه حل نيز نظارت های منظمی بر تجهيزات شبکه بی سيم باید انجام شود تا استفاده از مکانيسم های تأیيد هویت و پيکربندی مناسب ابزارهای شبکه تضمين شود. هر ابزار نظارت جامع باید نقاط دسترسی را در هر دو باند فرکانسی802.11 b (باند  GHz ISM 2.4) و (802.115 a GHz U-NII) تشخيص دهد و پارامترهای عملياتی مرتبط با امنيت را نيز مشخص کند. اگر یک ایستگاه غيرمجاز متصل به شبکه کشف شود، یک رسيور دستی می تواند برای ردیابی موقعيت فيزیکی آن استفاده شود. آنالایزرها نيز می توانند برای تأیيد پيکربندی بسياری از پارامترهای نقاط دسترسی استفاده گردند و هنگامی که نقاط دسترسی آسيب پذیری های امنيتی را نمایان می کنند، علائم هشدار دهنده صوتی توليد کنند.

مسأله شماره ۴ : محدودیت های سرویس و کارایی

LAهای بی سيم ظرفيت های ارسال محدودی دارند. شبکه های802.11 b سرعت انتقالی برابر با 11 Mbps و شبکه های برپایه تکنولوژی جدید 802.11 a نرخ انتقال اطلاعاتی تا  Mbps 54 دارند. البته ماحصل مؤثر واقعی، به دليل بالاسری لایه MAC تقریباً ، تا نيمی از ظرفيت اسمی می رسد. نقاط دسترسی کنونی این ظرفيت محدود را بين تمام کاربران مربوط به یک نقطه دسترسی قسمت می کنند. تصور اینکه چگونه برنامه های محلی احتمالاً چنين ظرفيت محدودی را اشغال می کنند یا چگونه یک نفوذگر ممکن است یک حمله انکار سرویس(DoS)  روی این منابع محدود طرح ریزی کند، سخت نيست.ظرفيت رادیویی می تواند به چندین روش اشغال شود. ممکن است توسط ترافيکی که از سمت شبکه باسيم با نرخی بزرگتر از توانایی کانال رادیویی می آید، مواجه شود. اگر یک حمله کننده یک ping flood را از یک بخش اترنت سریع بفرستد، می تواند به راحتی ظرفيت یک نقطه دسترسی را اشغال کند. با استفاده از آدرس های broadcast امکان اشغال چندین نقطه دسترسی متصل به هم وجود دارد. حمله کننده همچنين می تواند ترافيک را به شبکه رادیویی بدون اتصال به یک نقطه دسترسی بی سيم تزریق کند. 802.11 طوری طراحی شده است که به چندین شبکه اجازه به اشتراک گذاری یک فضا وکانال رادیویی را می دهد. حمله کنندگانی که می خواهند شبکه بی سيم را از کار بياندازند، می توانند ترافيک خود را روی یک کانال رادیویی ارسال کنند و شبکه مقصد ترافيک جدید را با استفاده از مکانيسم CSMA/CA تا آنجا که می تواند می پذیرد. مهاجمان بداندیش که فریم های ناسالم می فرستند نيز ظرفيت محدود را پر می کنند. همچنين ممکن است مهاجمان تکنيک های توليد پارازیت رادیویی را انتخاب کنند و اقدام به ارسال اطلاعات با نویز بالا به شبکه های بی سيم مقصد کنند.بارهای بزرگ ترافيک الزاماً با نيات بدخواهانه توليد نمی شوند. انتقال فایل های بزرگ یا سيستم client/server ترکيبی ممکن است مقادیر بالایی از دیتا روی شبکه ارسال کنند. اگر تعداد کافی کاربر شروع به گرفتن اندازه های بزرگی از دیتا از طریق یک نقطه دسترسی کنند، شبکه شبيه سازی دسترسی dial-upرا آغاز می کند.

راه حل شماره ۴ : دیدبانی شبکه

نشان یابی مسائل کارایی با دیدبانی و کشف آنها آغاز می شود. مدیران شبکه بسياری از کانال ها را برای کسب اطلاعات در مورد کارایی در اختيار دارند: از ابزارهای تکنيکی خاص مانند                                                                    (Simple Network Management Protocol) SNMPگرفته تا ابزارهای بالقوه قوی غيرفنی مانند گزارش های کارایی کاربران. یکی از مسائل عمده بسياری از ابزارهای تکنيکی، فقدان جزئيات مورد نياز برای درک بسياری از شکایت های کاربران در مورد کارایی است. آنالایزرهای شبکه های بی سيم می توانند با گزارش دهی روی کيفيت سيگنال و سلامت شبکه در مکان کنونی خود، کمک باارزشی برای مدیر شبکه باشند. مقادیر بالای ارسال های سرعت پایين می تواند بيانگر تداخل خارجی یا دور بودن یک ایستگاه از نقطه دسترسی باشد. توانایی نشان دادن سرعت های لحظه ای روی هر کانال، یک تصویر بصری قوی از ظرفيت باقی مانده روی کانال می دهد که به سادگی اشغال کامل یک کانال را نشان می دهد. ترافيک مفرط روی نقطه دسترسی می تواند با تقسيم ناحيه پوشش نقطه دسترسی به نواحی پوشش کوچک تر یا با اعمال روش شکل دهی ترافيک در تلاقی شبکه بی سيم با شبکه اصلی تعيين شود.در حاليکه هيچ راه حل فنی برای آسيب پذیری های ناشی از فقدان تأیيد هویت فریم های کنترل و مدیریت وجود ندارد، مدیران می توانند برای مواجهه با آنها گام هایی بردارند. آنالایزرها اغلب نزدیک محل های دردسرساز استفاده می شوند تا به تشخيص عيب کمک کنند و به صورت ایده آل برای مشاهده بسياری از حملات  DoSکار گذاشته می شوند. مهاجمان می توانند با تغيير دادن فریم های 802.11 با استفاده از یکی از چندین روش معمول واسط های برنامه نویسی 802.11 موجود، از شبکه سوءاستفاده کنند. حتی یک محقق امنيتی ابزاری نوشته است که پيام های قطع اتصال فرستاده شده توسط نقاط دسترسی به کلاینت ها را جعل می کند. بدون تأیيد هویت پيام های قطع اتصال بر اساس رمزنگاری، کلاینت ها به این پيام های جعلی عمل می کنند و اتصال خود را از شبکه قطع می کنند. تا زمانی که تأیيد هویت به صورت یک فریم رمزشده استاندارد درنياید، تنها مقابله عليه حملات جعل پيام، مکان یابی حمله کننده و اعمال عکس العمل مناسب است.

ربایی! Session و MAC مسأله شماره ۵: جعل

شبکه های 802.11 فریم ها را تأیيد هویت نمی کنند. هر فریم یک آدرس مبداء دارد، اما تضمينی وجود ندارد که ایستگاه فرستنده واقعاً فریم را ارسال کرده باشد! در واقع همانند شبکه های اترنت سنتی، مراقبتی در مقابل جعل مبداء آدرس ها وجود ندارد. نفوذگران ARP(Resolution Protocol Address) می توانند از فریم های ساختگی برای هدایت ترافيک و تخریب جداول استفاده کنند. در سطحی بسيار ساده تر، نفوذگران می توانند ایستگاه های در حال استفاده را مشاهده MAC (Medium Access Control) آدرس های کنند و از آن آدرس ها برای ارسال فریم های بدخواهانه استفاده کنند. برای جلوگيری ازاین دسته از حملات، مکانيسم تصدیق هویت کاربر برای شبکه های 802.11 در حال ایجاد است. با درخواست هویت از کاربران، کاربران غيرمجاز از دسترسی به شبکه محروم می شوند. اساس تصدیق هویت کاربران استاندارد 802.1 x است که در ژوئن 2001 تصویب شده است. 802.1 x می تواند برای درخواست هویت از کاربران به منظور تأیيد آنان قبل از دسترسی به شبکه مورد استفاده قرار گيرد، اما ویژگی های دیگری برای ارائه تمام امکانات مدیریتی توسط شبکه های بی سيم مورد نياز است.

نفوذگران می توانند از فریم های جعل شده در حملات اکتيو نيز استفاده کنند. نفوذگران می توانند از فقدان تصدیق هویت نقاط دسترسی sessions علاوه بر ربودن نشست ها(  چراغ دریایی ) Beaconبهره برداری کنند. نقاط دسترسی توسط پخش فریم های توسط نقاط دسترسی ارسال می شوند تا Beacon مشخص می شوند. فریم های کلاینت ها قادر به تشخيص وجود شبکه بی سيم و بعضی موارد دیگر شوند. هر SSID(Identifier Service Set) ایستگاهی که ادعا می کند که یک نقطه دسترسی است و نيز ناميده می شود، منتشر می کند، به عنوان network name که معمولاً Identifier  بخشی از شبکه مجاز به نظر خواهد رسيد. به هرحال، نفوذگران می توانند به راحتی تظاهر کنند که نقطه دسترسی هستند، زیرا هيچ چيز در 802.11 از نقطه دسترسی نمی خواهد که ثابت کند واقعاً یک نقطه دسترسی است. در این نقطه، یک نفوذگر گواهی های لازم را سرقت کند و از آنها man-in-the-middleتواند با طرح ریزی یک حمله برای دسترسی به شبکه استفاده کند. خوشبختانه، امکان استفاده از پروتکل هایی که TLS وجود دارد. با استفاده از پروتکل x تأیيد هویت دوطرفه را پشتيبانی می کنند در 802.1 قبل از اینکه کلاینت ها گواهی های هویت خود را ارائه (Transport Layer Security ) کنند، نقاط دسترسی باید هویت خود را اثبات کنند. این گواهی ها توسط رمزنگاری قوی برای ارسال بی سيم محافظت می شوند. ربودن نشست حل نخواهد شد تا زمانی که بپذیرد . i تصدیق هویت در هر فریم را به عنوان بخشی از802.11MAC 802.11.

راه حل شماره ۵ : پذیرش پروتکل های قوی و استفاده از آنها

یک تهدید خواهد بود. مهندسان شبکه باید روی MAC جعل  iتا زمان تصویب 802.11 تمرکز کنند و شبکه های بی سيم را تا آنجا که ممکن MAC خسارت های ناشی از جعلنقاط APاست از شبکه مرکزی آسيب پذیرتر جدا کنند. بعضی راه حل ها جعل  دسترسی را کشف می کنند و به طور پيش فرض برای مدیران شبکه علائم هشدار دهنده توليد می کنند تا بررسی های بيشتری انجام دهند. در عين حال، می توان فقط  با استفاده از پروتکل های رمزنگاری قوی مانند IPSec . از نشست ربایی! جلوگيری کرد آنالایزرها می توانند در بخشی از تحليل فریم های گرفته شده، سطح امنيتی مورد استفاده را تعيين کنند. این تحليل می تواند در یک نگاه به مدیران شبکه بگوید آیا پروتکل های امنيتی مطلوبی استفاده می شوند یا خير.

قوی، ممکن است که تمایل به استفاده از تصدیق VPN  علاوه بر استفاده از پروتکل های داشته باشيد. بعضی جزئيات آناليز وضعيت تصدیق x هویت قوی کاربر با استفاده از 802.1 ارائه می کند. X، نتایج باارزشی روی قسمت بی سيم تبادل تصدیق هویت 802.1x 802.1 هنگام انجام نظارت بر سایت، آنالایزر نوع تصدیق هویت را مشخص می کند و این بررسی به مدیران شبکه اجازه می دهد که محافظت از کلمات عبور توسط رمزنگاری قوی ر ا تضمين کنند.

مسأله شماره ۶: تحليل ترافيک و استراق سمع

802.11 هيچ محافظتی عليه حملاتی که بصورت غيرفعال (passive) ترافيک را مشاهده  می کنند، ارائه نمی کند. خطر اصلی این است که 802.11 روشی برای تامين امنيت دیتای در حال انتقال و جلوگيری از استراق سمع فراهم نمی کند Header  فریم ها هميشه «in the clear» هستند و برای هرکس با در اختيار داشتن یک آنالایزر شبکه بی سيم قابل مشاهده هستند. فرض بر این بوده است که جلوگيری از استراق سمع در مشخصات   WEP(Wired Equivalent Privacy) ارائه گردد. بخش زیادی در مورد رخنه های WEPنوشته شده است که فقط از اتصال ابتدایی بين شبکه و فریم های دیتای کاربر محافظت می کند. فریم های مدیریت و کنترل توسط WEPرمزنگاری و تصدیق هویت نمی شوند و به این ترتيب آزادی عمل زیادی به یک نفوذگر می دهد تا با ارسال فریم های جعلی اختلال به وجود آورد. پياده سازی های اوليه WEP نسبت به ابزارهای crackمانند WEPcrack و AirSnort آسيب پذیر هستند، اما آخرین نسخه ها تمام حملات شناخته شده را حذف می کنند. به عنوان یک اقدام احتياطی فوق العاده، آخرین محصولات WEP  یک گام فراتر می روند و از پروتکل های مدیریت کليد برای تعویض کليد WEP در هر پانزده دقيقه استفاده می کنند. حتی مشغول ترین LANبی سيم آنقدر دیتا توليد نمی کند که بتوان در پانزده دقيقه کليد را بازیافت کرد.

راه حل شماره ۶ : انجام تحليل خطر

هنگام بحث در مورد خطر استراق سمع، تصميم کليدی برقراری توازن بين خطر استفاده از WEPتنها و پيچيدگی بکارگيری راه حل اثبات شده دیگری است. در وضعيت فعلی برای امنيت لایه لينک، استفاده از WEP با کليدهای طولانی و توليدکليد پویا توصيه می شود.  WEP تا حد زیادی مورد کنکاش قرار گرفته است و پروتکل های امنيتی عليه تمام حملات شناخته شده تقویت شده اند. یک قسمت بسيار مهم در این تقویت، زمان کم توليد مجدد کليد است که باعث می شود نفوذگر نتواند در مورد خصوصيات کليد WEP قبل از ، جایگزین شدن، اطلاعات عمده ای کسب کند.اگر شما استفاده از WEPرا انتخاب کنيد، باید شبکه بی سيم خود را نظارت کنيد تا مطمئن شوید که مستعد حمله AirSnort  نيست. یک موتور آناليز قوی به طور خودکار تمام ترافيک دریافت شده را تحليل می کند و ضعف های شناخته شده را در فریم های  محافظت شده توسط WEP بررسی می کند. همچنين ممکن است بتواند نقاط دسترسی و ایستگاه هایی را که WEP  آنها فعال نيست نشان گذاری کند تا بعداً توسط مدیران  شبکه بررسی شوند. زمان کوتاه توليد مجدد کليد ابزار بسيار مهمی است که در کاهش خطرات مربوط به شبکه های بی سيم استفاده می شود. بعنوان بخشی از نظارت سایت، مدیران شبکه می توانند از آنالایزرهای قوی استفاده کنند تا مطمئن شوند که سياست های توليد کليد مجدد WEP توسط تجهيزات مربوطه پياده سازی شده اند.

اگر از LAN بی سيم شما برای انتقال دیتای حساس استفاده می شود، ممکن است WEP برای نياز شما کافی نباشد. روش های رمزنگاری قوی مانند IPSec و SSL ،SSH   برای انتقال دیتا به صورت امن روی کانال های عمومی طراحی شده اند و برای سال ها مقاومت آنها در برابر حملات ثابت شده است، و یقيناً سطوح بالاتری از امنيت را ارائه می کنند. نمایشگرهای وضعيت نقاط دسترسی می توانند بين نقاط دسترسی که از WEP ،802.1 x و VPN استفاده می کنند، تمایز قائل شوند تا مدیران شبکه بتوانند بررسی کنند و که آیا در آنها از سياست های رمزنگاری قوی تبعيت می شود یا خير.

علاوه بر استفاده از پروتکل های VPN قوی، ممکن است که تمایل به استفاده از تصدیق هویت قوی کاربر با استفاده از802.1 x  داشته باشيد. بعضی جزئيات آناليز وضعيت تصدیق 802.1 x، نتایج باارزشی روی قسمت بی سيم تبادل تصدیق هویت 802.1 x ارائه می کند.

آنالایزر هنگام انجام نظارت بر سایت، نوع تصدیق هویت را مشخص می کند و این بررسی به مدیران شبکه اجازه می دهد که محافظت از کلمات عبور توسط رمزنگاری قوی را تضمين کنند.

مسأله شماره ٧: حملات سطح بالاتر

هنگامی که یک نفوذگر به یک شبکه دسترسی پيدا می کند، می تواند از آنجا به عنوان نقطه ای برای انجام حملات به سایر سيستم ها استفاده کند. بسياری از شبکه ها یک پوسته بيرونی سخت دارند که از ابزار امنيت پيرامونی تشکيل شده، به دقت پيکربندی شده و مرتب دیده بانی می شوند. اگرچه درون پوسته یک مرکز آسيب پذیر نرم قرار دارد.

LAN های بی سيم می توانند به سرعت با اتصال به شبکه های اصلی آسيب پذیر مورد  استفاده قرار گيرند، اما به این ترتيب شبکه در معرض حمله قرار می گيرد. بسته به امنيت پيرامون، ممکن است سایر شبکه ها را نيز در معرض حمله قرار دهد، و می توان شرط بست که اگر از شبکه شما به عنوان نقطه ای برای حمله به سایر شبکه ها استفاده شود، حسن شهرت خود را از دست خواهيد داد.

راه حل شماره ٧ : هسته را از LAN بی سيم محافظت کنيد

به دليل استعداد شبکه های بی سيم برای حمله، باید به عنوان شبکه های غيرقابل اعتماد مورد استفاده قرار بگيرند. بسياری از شرکت ها درگاه های دسترسی guest در اتاق های آموزش یا سالن ها ارائه می کنند. شبکه های بی سيم به دليل احتمال دسترسی توسط کاربران غيرقابل اعتماد می توانند به عنوان درگا ه های دسترسی guestتصور شوند. شبکه بی سيم را بيرون منطقه پيرامون امنيتی شرکت قرار دهيد و از تکنولوژی کنترل دسترسی قوی و ثابت شده مانند یک فایروال بين LAN بی سيم و شبکه مرکزی استفاده کنيد، و سپس دسترسی به شبکه مرکزی را از طریق روش های VPN

تثبيت شده ارائه کنيد.

Byadmin

الگوریتم های مسیریابی

الگوریتم های مسیریابی الگوریتم-های-مسیریابی روترها از الگوريتمهاي مسيريابي،براي يافتن بهترين مسير تا مقصد استفاده مينمايند هنگامي كه ما در مورد بهترين مسير صحبت ميكنيم،پارامترهايي همانند تعداد hopها (مسيري كه يك بسته از يك روتر ديگر در شبكه منتقل ميشود).زمان تغيير و هزينه ارتباطي ارسال بسته را در نظر ميگيريم. مبتني بر اينكه روترها چگونه اطلاعاتي در مورد ساختار يك شبكه جمع آوري مينمايند و نيز تحليل آنها از اطلاعات براي تعيين بهترين مسير،ما دو الگوريتم مسير يابي اصلي را در اختيار داريم:الگوريتم مسير يابي عمومي و الگوريتمهاي مسير يابي غير متمركز. در الگوريتم هاي مسير يابي غير متمركز،هر روتر اطلاعاتي در مورد روترهايي كه مستقيما به آنها متصل ميباشند در اختيار دارد. در اين روش هر روتر در مورد همه روتر هاي موجود در شبكه،اطلاعات در اختيار ندارد.اين الگوريتمها تحت نام الگوريتمهاي (DV (distance vectorمعروف هستند.در الگوريتمهاي مسيريابي عمومي،هر روتر اطلاعات كاملي در مورد همه روترهاي ديگر شبكه و نيز وضعيت ترافيك شبكه در اختيار دارد.اين الگوريتمها تحت نام الگوريتمهاي(LS(Link state معروف هستند.ما در ادامه مقاله به بررسي الگوريتمهاي LS ميپردازيم. 1-6- روش‌های مسیریابی در شبکه‌های حسگر در مسیریابی در شبکه‌های ادهاک نوع حسگر سخت‌افزار محدودیت‌هایی را بر شبکه اعمال می‌کند که باید در انتخاب روش مسیریابی مد نظر قرار بگیرند ازجمله اینکه منبع تغذیه در گره‌ها محدود می‌باشد و در عمل، امکان تعویض یا شارژ مجدد آن مقدور نیست؛ لذا روش مسیریابی پیشنهادی در این شبکه‌ها بایستی از انرژی موجود به بهترین نحو ممکن استفاده کند یعنی باید مطلع از منابع گره باشد و اگر گره منابع کافی نداشت بسته را به آن برای ارسل به مقصد نفرستد. *روش سیل آسا در این روش یک گره جهت پراکندن قسمتی از داده‌ها در طول شبکه، یک نسخه از داده مورد نظر را به هر یک از همسایگان خود ارسال می‌کند. هر وقت یک گره، داده جدیدی دریافت کرد، از آن نسخه برداری می‌کند و داده را به همسایه‌هایش (به جز گرهی که داده را از آن دریافت کرده‌است) ارسال می‌کند. الگوریتم زمانی همگرا می‌شود یا پایان می‌یابد که تمامی گره‌ها یک نسخه از داده را دریافت کنند. زمانی که طول می‌کشد تا دسته‌ای از گره‌ها مقداری از داده‌ها را دریافت و سپس ارسال کنند، یک دور نامیده می‌شود. الگوریتم سیل آسا در زمان O(d) دور، همگرا می‌شود که d قطر شبکه‌است چون برای یک قطعه داده d دور طول می‌کشد تا از یک انتهای شبکه به انتهای دیگر حرکت کند. سه مورد از نقاط ضعف روش ارسال ساده جهت استفاده از آن در شبکه‌های حسگر در زیر آورده شده‌است :

  1. انفجار: در روش سنتی سیل آسا، یک گره همیشه داده‌ها را به همسایگانش، بدون در نظر گرفتن اینکه آیا آن همسایه، داده را قبلا دریافت کرده یا خیر، ارسال می‌کند. این عمل باعث بوجود آمدن مشکل انفجار می‌شود. هم پوشانی: حسگرها معمولاً نواحی جغرافیایی مشترکی را پوشش می‌دهند و گره‌ها معمولاً قطعه داده‌هایی از حسگرها را دریافت می‌کنند که با هم هم پوشانی دارند.
  2. عدم اطلاع از منابع: در روش سیل آسا، گره‌ها بر اساس میزان انرژی موجودی خود در یک زمان، فعالیت‌های خود را تغییر نمی‌دهند در صورتی که یک شبکه از حسگرهای خاص منظوره، می‌تواند از منابع موجود خود آگاهی داشته باشد و ارتباطات و محاسبات خود را با شرایط منابع انرژی خود مطابقت دهد.

* روش شایعه پراکنی این روش یک جایگزین برای روش سیل آسا سنتی محسوب می‌شود که از فرایند تصادف برای صرفه جویی در مصرف انرژی بهره می‌برد. به جای ارسال داده‌ها به صورت یکسان، یک گره شایعه پراکن، اطلاعات را به صورت تصادفی تنها به یکی از همسایگانش ارسال می‌کند. اگر یک گره شایعه پراکن، داده‌ای را از همسایه اش دریافت کند، می‌تواند در صورتی که همان همسایه به صورت تصادفی انتخاب شد، داده را مجددا به آن ارسال کند. * روش اسپین)  ( SPIN: روش SPIN خانواده‌ای از پروتکل‌های وقفی است که می‌توانند داده‌ها را به صورت موثری بین حسگرها در یک شبکه حسگر با منابع انرژی محدود، پراکنده کنند. همچنین گره‌های SPIN می‌توانند تصمیم گیری جهت انجام ارتباطات خود را هم بر اساس اطلاعات مربوط به برنامه کاربردی و هم بر اساس اطلاعات مربوط به منابع موجود خود به انجام برسانند. این کار باعث می‌شود که حسگرها بتوانند داده‌ها را با وجود منابع محدود خود، به صورت کارآمدی پراکنده کنند. گره‌ها در SPIN برای ارتباط با یکدیگر از سه نوع پیغام استفاده می‌کنند:

  1. ADV: برای تبلیغ داده‌های جدید استفاده می‌شود. وقتی یک گره SPIN، داده‌هایی برای به اشتراک گذاشتن در اختیار دارد، این امر را می‌تواند با ارسال شبه داده مربوطه تبلیغ کند.
  2. REQ: جهت درخواست اطلاعات استفاده می‌شود. یک گره SPIN می‌تواند هنگامی که می‌خواهد داده حقیقی را دریافت کند از این پیغام استفاده کند.
  3. DATA: شامل پیغام‌های داده‌ای است. پیغام‌های DATA محتوی داده حقیقی جمع آوری شده توسط حسگرها هستند.

* روش انتشار هدایت شده در این روش منابع و دریافت کننده‌ها از خصوصیات، برای مشخص کردن اطلاعات تولید شده یا موردنظر استفاده می‌کنند و هدف روش انتشار هدایت شده پیدا کردن یک مسیر کارآمد چندطرفه بین فرستنده و گیرنده هاست. در این روش هر وظیفه به صورت یک علاقه مندی منعکس می‌شود که هر علاقه مندی مجموعه‌ای است از زوج‌های خصوصیت مقدار. برای انجام این وظیفه، علاقه مندی در ناحیه موردنظر منتشر می شود. در این روش هر گره، گره‌ای را که اطلاعات از آن دریافت کرده به خاطر می‌سپارد و برای آن یک گرادیان تشکیل می‌دهد که هم مشخص کننده جهت جریان اطلاعات است و هم وضعیت درخواست را نشان می‌دهد (که فعال یا غیرفعال است یا نیاز به بروز شدن دارد). در صورتی که گره از روی گرادیان‌های قبلی یا اطلاعات جغرافیایی بتواند مسیر بعدی را پیش بینی کند تنها درخواست را به همسایه‌های مرتبط با درخواست ارسال می‌کند و در غیر این صورت، درخواست را به همه همسایه‌های مجاور ارسال می‌کند. وقتی یک علاقه مندی به گره‌ای رسید که داده‌های مرتبط با آن را در اختیار دارد، گره منبع، حسگرهای خود را فعال می‌کند تا اطلاعات موردنیز را جمع آوری کنند و اطلاعات را به صورت بسته‌های اطلاعاتی ارسال می‌کند. داده‌ها همچنین می‌توانند به صورت مدل خصوصیت-نام ارسال شوند. گرهی که داده‌ها را ارسال می‌کند به عنوان یک منبع شناخته می‌شود. داده هنگام ارسال به مقصد در گره‌های میانی ذخیره می‌شود که این عمل در اصل برای جلوگیری از ارسال داده‌های تکراری و جلوگیری از به وجودآمدن حلقه استفاده می‌شود. همچنین از این اطلاعات می‌توان برای پردازش اطلاعات درون شبکه و خلاصه سازی اطلاعات استفاده کرد. پیغام‌های اولیه ارسالی به عنوان داده‌های اکتشافی برچسب زده می‌شوند و به همه همسایه‌هایی که به گره دارای داده، گرادیان دارند ارسال می‌شوند یا می‌توانند از میان این همسایه‌ها، یکی یا تعدادی را برحسب اولویت جهت ارسال بسته‌های اطلاعات انتخاب کنند. (مثلا همسایه‌هایی که زودتر از بقیه پیغام را به این گره ارسال کرده‌اند) برای انجام این کار، یرنده یا سینک همسایه‌ای را جهت دریافت اطلاعات ترجیح می‌دهد تقویت می‌کند. اگر یکی از گره‌ها در این مسیر ترجیحی از کار بیفتد، گره‌های شبکه به طور موضعی مسیر از کار افتاده را بازیابی می‌کنند. در نهایت گیرنده ممکن است همسایه جاری خود را تقویت منفی کند در صورتی که مثلا همسایه دیگری اطلاعات بیشتری جمع آوری کند. پس از ارسال داده‌های اکتشافی اولیه، داده‌های بعدی تنها از طریق مسیرهای تقویت شده ارسال می‌شوند. منبع اطلاعات به صورت متناوب هر چند وقت یکبار داده‌های اکتشافی ارسال می‌کند تا گرادیان‌ها در صورت تغییرات پویای شبکه، بروز شوند. 1-1-6- انجام عملیات محاسباتی توزیع شده و مشارکتی

  1. در وقوع حوادث ناگوار همچود زمین لرزه , سیل و … که امکان آسیب دیدگی station های ثابت وجود دارد (در شبکه با ساختار ثابت در صورت آسیب دیدن station اصلی ممکن است کل شبکه از کار بیافتد).
  2. عملیات جستجو و نجات
  3. و موارد نظامی
  4. پروتوکل های مسیر یابی (Routing Protocols) : همان طور که پیش از این نیز اشاره شد در شبکه های Mobile Ad hoc عمل مسیر یابی به دلایلی همچون متحرک بودن و نبود سیستم کنترلی متمرکز از اهمیت بالایی بر خوردار بوده و مطالعه و بررسی بیشتری را می طلبد . قبل از بررسی این پروتوکل ها باید توجه کنیم که هدف از الگوریتم ها و استراتژی های مسیریابی جدید کاهش سربار ناشی از مسیریابی در کل شبکه , یافتن مسیرهای کوتاه تر و انتقال صحیح داده ها و اطلاعات می باشد.

* الگوریتم بردار فاصله در این الگوریتم از الگوریتم bellman – ford استفاده می‌شود و می‌توان یک رقم و هزینه را برای هر لینک بین گروه‌های شبکه تعیین نمود. گره‌ها می‌توانند اطلاعات را از A به B بفرستند. و این از طریق مسیر کم هزینه عملی است. این الگوریتم خیلی ساده عمل می‌کند. ابتدا باید راه اندازی انجام شود. بخش‌های همجوار نیز باید شناخته شوند. هر گره به طور منظم می‌تواند هزینه کل را به مقصد بفرستد. گره‌های همجوار به بررسی اطلاعات و مقایسه یافته‌ها می‌پردازند. این عامل پیشرفت در جداول مسیریابی خواهد بود. تمام گره‌ها بهترین حلقه را کشف می‌کنند. وقتی یکی از گره‌ها کاهش یافت آنهایی که در همجوار هستند می‌توانند ورودی را خالی کنند و به مقصد بروند. به این طریق اطلاعات جدول ارائه خواهند شد. آنها می‌توانند اطلاعات را در اختیار گره‌های مجاور قرار دهند. در نهایت اطلاعات ارتقا یافته دریافت می‌شوند و مسیر جدید شناخته خواهد شد. * الگوریتم حالت لینک وقتی از این الگوریتم استفاده می‌شود هر گره از داده‌های اصلی در الگوی شبکه‌ای استفاده خواهد نمود. در این شرایط تمام گره‌ها وارد شبکه می‌شوند و اطلاعات با یکدیگر در ارتباط خواهند بود. این گره‌ها می‌توانند اطلاعات را وارد نقشه کنند. به این طریق هر مسیریاب تعیین کننده مسیر کم هزینه به سمت دیگر گره‌ها خواهد بود. در نهایت یک الگوریتم با کوتاهترین مسیر به وجود می‌آید. این درخت می‌تواند ماحصل ترکیب این گره‌ها باشد. در این شرایط بهتر است این درخت در طراحی جدول استفاده شود و حلقه بعدی گره نیز مشخص گردد. 2-6- مقایسه الگوریتم مسیریابی پروتکلهای مسیریابی بردار-فاصله در شبکه‌های کوچک، ساده و کارآمد بوده و به مدیریت اندکی نیازمند هستند. با این وجود آلگوریتمهای اولیه بردار-فاصله از نظر مقیاس پذیری خوب نیستند و قابلیتهای همگرایی آنها ضعیف است که این امر منجر به توسعه الگوریتمهای پیچیده تر با مقیاس پذیری بهتر جهت شبکه‌های بزرگ شده‌است. بدین جهت اغلب پروتکلهای مسیریابی درونی از پروتکل‌های وضعیت لینک مانند OSPF و IS-IS استفاده می‌کنند. یکی از توسعه‌های اخیر در پروتکل‌های بردار فاصله، قابلیت بدون حلقه یا loop-free می‌باشد که بطور مثال در EIGRP پیاده سازی شده‌است. این پروتکل ضمن داشتن تمام قابلیتهای پروتکلهای بردار فاصله، مشکل count-to-infinity را حل کرده و از این جهت زمان همگرایی پروتکل را بهبود بخشیده‌است. 3-6- انتخاب مسیر یک اصل مسیریابی توسط آلگوریتم مسیریابی معرفی شده‌است که تعیین کننده عملکرد آنها است. این اصول می‌توانند مربوط به پهنای باند، تاخیر، تعداد حلقه‌ها، هزینه مسیر بار و MTU، اعتبار پذیری و هزینه ارتباطی باشند. این جداول عامل ذخیره بهترین مسیرها هستند ولی پایگاه‌های حالت لینک و توپولوژیکی نیز نقش ذخیره دارند. وقتی اصل مسیر یابی در یک پروتکل خاص استفاده شود مسیریاب‌های چند پروتکلی از یک روش اکتشافی خارجی استفاده می‌کنند و به این ترتیب مسیرهای آموخته شده را انتخاب خواهند کرد. به عنوان مثال مسیریاب Cisco یک ارزش به صورت فاصله اجرایی دارد. در این فاصله مسیرها می‌توانند پروتکل معتبر تولید کنند.   4-6- عوامل چندگانه در بعضی از شبکه‌ها، مسیریابی تحت اثر این واقعیت است که هیچ عامل واحدی علت انتخاب مسیر نمی‌باشد. این عوامل در انتخاب مسیر و بخش‌هایی از آن کاربرد دارند. پیچیدگی و یا عدم وجود راندمان کافی می‌تواند یک عامل مهم در بهینه سازی اهداف باشد. در این شرایط یک تناقض با اهداف دیگر شرکت کننده‌ها به وجود می‌آید. یک مثال از این شامل ترافیک در سیستم جاده‌ای است. در این حالت هر راننده به دنبال یک مسیر است که زمان کمتری داشته باشد. با این وجود مسیر تعادلی می‌تواند برای تمام آنها مطلوب باشد. تناقض braess نشان می‌دهد که افزایش جاده جدید می‌توان زمان سفر را طولانی کند. اینترنت به سیستم ناشناخته مانند Isp تقسیم می‌شود که هر یک دارای کنترل مسیر شبکه هستند. مسیرهای سطح AS می‌توانند از طریق پروتکل BGP انتخاب شوند. این عامل تولید یک توالی AS ازطریق بسته‌های جریان یافته‌است. هر AS دارای چند مسیر است که در خدمت ASهای مجاور قرار گرفته‌است. تصمیم گیری در این زمینه شامل ارتباط تجاری با این بخش‌های همجوار است. البته این ارتباط با کیفیت مسیر کمتر است. دوم آنکه وقتی مسیر سطح AS انتخاب شد چند مسیر سطح ردیاب به وجود می‌آید و دو IS می‌توانند در چند محل به هم متصل باشند. در انتخاب این مسیر واحد باید هر ISP ازمسیریابی داغ استفاده کند که شامل ارسال ترافیک در مسیر و کاهش فاصله از طریق شبکه ISP است حتی اگر آن مسیر فاصله کل مقصد را افزایش دهد. دو تا ISP به نام B،A را در نظر بگیرید. هر یک در نیویورک با یک لینک سریع در ارتباط هستند و فضای پنهان ۵ms دارند. آنها در لندن با لینک ۵ms مرتبط می‌شوند. فرض کنید که آنها لینک خارج از قاره دارند و لینک A دارای ms ۱۰۰ و لینک B دارای ms ۱۲۰ حافظه‌است. وقتی مسیریابی از یک منبع در شبکه A صورت گیرد پیام به B درلندن خواهد رفت. این عامل ذخیره A در لینک فرا قاره‌ای است ولی پیام وارد لینک ms ۱۲۵ خواهد شد که تا ms ۲۰ سریع تر است. مطالعه سال ۲۰۰۳ نشان داد که بین جفت‌های IPS همجوار، بیش از ۳۰% مسیر دارای حافظه پنهان است و ۵% آن حداقل ms ۱۲ تاخیر دارد. این مشکل ناشی از انتخاب مسیر سطح AS می‌باشد ولی می‌تواند به عدم وجود مکانیزم بهینه سازی BGP اشاره کند. گفته می‌شود که در یک مکانیزم مناسب ISP می‌تواند در مشارکت قرار گیرد و حافظه پنهان را کاهش دهد. 5-6- سایر الگوریتم های مسیریابی *الگوريتمهاي LS در الگوريتمهاي LS ،هر روتر ميبايست مراحل ذيل را به انجام رساند: روترهاي را كه به لحاظ فيزيكي به آنها متصل ميباشد را شناسايي نموده و هنگامي كه شروع به كار ميكند آدرسهايIP آنها بدست آورد. اين روتر ابتدا يك بسته HELLO را روي شبكه ارسال ميكند. هر روتري كه اين بسته را دريافت ميكند از طريق يك پيام كه داراي آدرس IP خود اين روتر ميباشد به پيام HELLO پاسخ ميدهد. زمان تاخير مربوط به روترهاي مجاور را اندازه گيري نمايد(يا هر پارامتر مهم ديگري از شبكه همانند ترافيك متوسط) براي انجام اين كار ،روترها بسته هاي echo را روي شبكه ارسال ميكنند. هر روتري كه اين بسته ها را دريافت ميكند با يك بسته echo reply به آن پاسخ ميدهد.با تقسيم زمان مسير رفت و برگشت به دو،روترها ميتوانند زمان تاخير را محاسبه كنند.(زمان مسير رفت و برگشت،سنجشي از تاخير فعلي روي يك شبكه ميباشد)توجه داشته باشيد كه اين زمان شامل زمانهاي ارسال و پردازش ميباشد. اطلاعات خود را در مورد شبكه،براي استفاده ساير روترها منتشر نموده و اطلاعات روترهاي ديگر را دريافت كند. در اين مرحله همه روترها دانش خود را با روتر هاي ديگر به اشتراك گذاشته و اطلاعات مربوط به شبكه را با يكديگر مبادله ميكنند.با اين روش هر روتر ميتواند در مورد ساختار و وضعيت شبكه اطلاعات كافي بدست آورد. با استفاده از اين الگوريتم مناسب،بهترين مسير بين هر دو گره از شبكه راشناسايي كند. در اين مرحله،روترها بهترين مسير تا هر گره را انتخاب ميكنند.آنها اين كار را با استفاده از يك الگوريتم همانند الگوريتم كوتاهترين مسير Dijkstra انجام ميدهند.در اين الگوريتم،يك روتر مبتني بر اطلاعاتي كه از ساير روترها جمع آوري نموده است،گرافي از شبكه را ايجاد مينمايد.اين گراف مكان روترهاي موجود در شبكه و نقاط پيوند آنها را به يكديگر نشان ميدهد.هر پيوند با يك شماره به نام Costياweight مشخص ميشود.اين شماره تابعي از زمان تاخير،متوسط ترافيك و گاهي اوقات تعداد hopهاي بين گره ها ميباشد.براي مثال اگر دو پيوند بين يك گره و مقصد وجود داشته باشد،روتر پيوندي با كمترين Weight را انتخاب ميكند. الگوريتم Dijkstra داراي مراحل ذيل ميباشد: روتر گرافي از شبكه را ايجاد نموده و گره هاي منبع و مقصد(براي مثال V1 وV2)را شناسايي ميكند.سپس يك ماتريس به نام ماتريس adjacency را ميسازد.در اين ماتريس يك مختصه مبين Weight ميباشد.براي مثال[i,j]،وزن يك پيوند بين Viو Vj ميباشد.در صورتي كه هيچ پيوند مستقيمي بين Vi وVj وجود نداشته باشد اين وزن (ويت) بصورت infinity در نظر گرفته ميشود. روتر يك مجموعه ركورد وضعيت را براي هر گره روي شبكه ايجاد مينمايد اين ركورد داراي سه فيلد ميباشد: فيلد Predecessor:اولين فيلدي كه گره قبلي را نشان ميدهد. فيلد Length:فيلد دوم كه جمع وزنهاي از منبع تا آن گره را نشان ميدهد. فيلد Label:آخرين فيلد كه وضعيت گره را نشان ميدهد.هر گره ميتواند داراي يك مود وضعيت باشد:tentative يا permanent روتر،پارامترهاي مجموعه ركورد وضعيت براي همه گره ها را آماده سازي اوليه نموده و طول آنها را در حالت infinity و Labelآن را در وضعيت tentative قرار ميدهد. روتر،يك گره T را ايجاد ميكند.براي مثال اگر V1 ميبايست گره T منبع باشد،روتر برچسب V1را در وضعيت permanent قرار ميدهد.هنگامي كه يك Label به حالت permanent تغيير ميكند ديگر هرگز تغيير نخواهد كرد. يك گره T در واقع يك agent ميباشد. روتر،مجموع ركورد وضعيت مربوط به همه گره هاي Tentative را كه مستقيما به گره T منبع متصل هستند،روز آمد مينمايد. روتر همه گره هاي Tentative را بررسي نموده و گرهاي را كه وزن آن تا V1 كمترين مقدار را دارد انتخاب ميكند.سپس اين گره،گره Tمقصد خواهد بود اگر اين گره،V2 نباشد(گره مقصد)روتر به مرحله 5باز ميگردد. اگر اين گره V2 باشد،روتر گره قبلي آن را از مجموع ركورد وضعيت استخراج نموده و اين كار را انجام ميدهد تا به V1 برسد،اين فرست از گره ها،بهترين مسير از V1تاV2را نشان ميدهد.   *الگوريتمهاي DV الگوريتمهاي DVبا نامهاي الگوريتمهاي مسيريابي Bellman-Ford و ford-fulkerson نيز ياد ميشوند.در اين الگوريتمها،هر روتر داراي يك جدول مسيريابي ميباشد كه بهترين مسير تا هر مقصد را نشان ميدهد. همانطور كه در جدول مشاهده ميكنيد،اگر روتر G بخواهد بسته هايي را به روتر D ارسال كند،ميبايست آنها را به روتر H ارسال نمايد.هنگامي كه بسته ها به روتر H رسيدند،اين روتر جدول خود را بررسي نموده و روي چگونگي ارسال بسته ها به D تصميم گيري مي كند

Destination Weight Line
A 8 A
B 20 A
C 28 I
D 20 H
E 17 I
F 30 I
G 18 H
H 12 H
I 10 I
J 0
K 6 K
L 15 K

جدول 1-6-الگوریتم مسیریابی DV در الگوريتمهاي DV،هر روتر ميبايست مراحل ذيل را انجام دهد: وزن لينكهاي مستقيما متصل به آن را اندازه گرفته و اين اطلاعات را در جدول خود ذخيره كند. در يك دوره زماني خواص،روتر جدول خود را به روترهاي مجاور ارسال نموده و جدول مسيريابي هر يك از روترهاي مجاور خود را دريافت ميكند. مبتني بر اطلاعات بدست آمده از جداول مسيريابي روترهاي مجاور،جدول خود را روز آمدسازي مينمايد. يكي از مهمترين مشكلات،هنگام كار با الگوريتمهاي DV،مشكل ‍Count to infinity اجازه بدهيد اين مشكل را با ذكر يك مثال روشن كنيم. همانطور كه در قسمت ذيل نشان داده شده است يك شبكه را در ذهن خود تصور كنيد.همانطور كه در اين جدول ميبينيد،فقط يك پيوند بين A و ساير بخشهاي شبكه وجود دارد.در اينجا شما ميتوانيد،اين گراف و جدول مسيريابي همه گره ها را مشاهده كنيد:

A B C D
A 0,- 1,A 2,B 3,D
B 1,B 0,- 2,C 3,D
C 2,B 1,C 0,- 1,C
D 3,B 2,C 1,D 0,-

جدول 2-6- جدول مسیریابی گره های گراف اكنون تصور كنيد كه پيوند بين A و B قطع شود.در اين هنگام، B جدول خود را تصحيح ميكند بعد از يك مدت زمان خاص،روترها جداول خود را مبادله نموده و بنابراين B جدول مسيريابي C را دريافت ميكند. از آنجايي كه C نميداند چه اتفاقي براي پيوند بين A و B رخ داده است اين اطلاعات را حفظ ميكند.B اين جدول را دريافت نموده و فكر ميكند كه يك پيوند جداگانه بين Cو A وجود دارد،بنابراين جدول خود را تصحيح نموده مقدار infinity را به 3 تغيير ميدهد.به همين شكل دوباره روترها جداول خود را مبادله ميكنند.هنگامي كه C،جدول مسيريابي B را دريافت ميكند،مشاهده ميكنيد كه B وزن پيوند خود تا A را از 1به 3 تغيير داده است،بنابراين C ،جدول خود را روزآمد نموده و وزن پيوند خود تا Aرا به 4 تغيير ميدهد.اين پروسه تكرار ميشود تا همه گره ها وزن پيوند خود را تا A در وضعيت infinity قرار دهند.اين وضعيت در جدول زير نشان داده شده است.

B C D
Sum of weight to A after link cut ∞,A 2,B 3,C
Sum of weight to B after 1st updating 3,C 2,B 3,C
Sum of weight to A after 2nd updating 3,C 4,B 3,C
Sum of weight to A after 3rd updating 5,C 4,B 5,C
Sum of weight to A after 4th updating 5,C 6,B 5,C
Sum of weight to A after 5th updating 7,C 6,B 7,C

جدول 3-6- مسیرهای گره های گراف با استفاده از الگوریتم DV در اين روش متخصصين ميگويند،الگوريتمهاي DV داراي يك سرعت همگرايي پايين هستند.يك روش براي حل اين مشكل در مورد روترها،ارسال اطلاعات فقط به روترهايي ميباشد كه داراي پيوند انحصاري تا مقصد نيستند.براي مثال در اين مورد،C نميبايست هيچ اطلاعاتي را به گره B در مورد A ارسال كند زيرا B فقط يك مسير تا A را در اختيار دارد. 6-6- مسيريابي سلسله مراتبي همانطور كه شما ميبينيد،در هر دو الگوريتم LS و DV،هر روتر مجبور به ذخيره نمودن اطلاعات مربوط به روترهاي ديگر ميباشد.هنگامي كه اندازه شبكه رشد ميكند،تعداد روترهاي شبكه افزايش مي يابد در نتيجه اندازه جداول مسيريابي نيز افزايش مي يابد و روترها نميوانند ترافيك شبكه را به طور موثر كنترل كنند.ما از مسيريابي سلسله مراتبي براي برطرف كردن اين مشكل استفاده ميكنيم.اجازه بدهيد اين موضوع با ذكر يك مثال روشن كنيم: ما از الگوريتمهاي DV براي يافتن بهترين مسير بين گره ها استفاده ميكنيم در وضعيت نشان داده شده در ذيل،هر گره از شبكه مجبور به نگهداري يك جدول مسيريابي با 17 ركورد ميباشد.در اينجا يك گراف معمولي و جدول مسيريابي مربوط به A ارائه شده است.

Destination Line Weight
A
B B 1
C C 1
D B 2
E B 3
F B 3
G B 4
H B 5
I C 5
J C 6
K C 5
L C 4
M C 4
N C 3
O C 4
P C 2
Q C 3

جدول 4-6- جدول مسیریابی با 17 رکورد در مسيريابي سلسله مراتبي،روترها در گروههايي به نام regions طبقه بندي ميشوند.هر روتر داراي اطلاعاتي فقط در مورد روترهايي كه در region آنها قرار دارد در اختيار داشته و هيچ گونه اطلاعاتي در مورد region هاي ديگر ندارند. در اين مثال ما شبكه خود را به پنج region تقسيم ميكنيم.اگر A بخواهد بسته ها را به هر روتر در region2 ارسال كند،آنها را به B ارسال ميكند و الي آخر.

Destination Line Weight
A
B B 1
C C 1
Region 2 B 2
Region 3 C 2
Region 4 C 3
Region 5 C 4

در اين نوع مسيريابي،جداول را ميتوان خلاصه نمود بنابراين راندمان شبكه بهبود مييابد.مثال بالا مسيريابي سلسله مراتبي دو سطحي را نشان ميدهد همچنين ميتوان از مسيريابي سلسله مراتبي 3 سطحي و 4 سطحي استفاده كرد.در مسيريابي سلسله مراتبي 3سطحي،شبكه به تعدادي كلاستر تقسيم بندي ميشود.هر كلاستر متشكل از تعدادي region و هر region داراي تعدادي روتر ميباشد.مسيريابي سلسله مراتبي به طور وسيعي در مسيريابي اينترنت مورد استفاده قرار ميگيرد و استفاده از چندين پروتكل مسيريابي را ممكن مي سازد. شکل 1-6- پدیده چند مسیری   7-6- پدیده چند مسیری شکل 1-6 مسیری را نشان میدهد . در این پدیده مسیر و زمان بندی سیگنال در اثر بر خورد با موانع و انعکاس تغییر می کند . پیاده سازی های اولیه از استاندارد b802.11 از تکنیک FHSS در لایه فیزیکی استفاده می کردند . از ویژگی های قابل توجه این تکنیک مقاومت قابل توجه آندر برابر پدیده چند مسیری است . در این تکنیک از کانال های متعددی (79 کانال )با پهنای باند نسبتا کوچک استفاده شده و فرستنده و گیرنده به تناوب کانال فرکانسی خود را تغییر می دهند . این کانال هر 400 میلی ثانیه بروز می کند لذا مشکل چند مسیری به شکل قابل ملاحظه ای منتفی می شود. زیرا گیرنده سیگنال اصلی (که سریع تر از سایرین رسیده و عاری از تداخل است ) را دریافت کرده و کانال فرکانسی خود را عوض می کند و سیگنال های انعکاسی زمانی به گیرنده می رسد که کانال فرکانسی قبلی خود را عوض کرده و در نتیجه توسط گیرنده احساس و در یافت نمی شود .

Byadmin

پروتکل های مسیریابی

پروتکل های مسیریابی

امروزه علم کامپیوتر به حدی پیشرفت کرده که بسیاری از علوم دیگر پیشرفتشان وابسته به علم کامپیوتر می باشد.شبکه های کامپیوتری به حدی پیشرفت کرده اند که توانسته اند جهان را به یک دهکده علمی کوچک تبدیل نمایند.برای برقراری ارتباط بین این شبکه ها نیازمند به یک ستون فقرات می باشیم٬ این شبکه زیر بنایی که از تعداد زیادی مسیریاب تشکیل شده است وظیفه انتقال اطلاعات را دارد. بر روی این مسیریاب ها باید الگوریتم هایی اجرا شوند تا بتوانند بهترین مسیر را برای انتقال اطلاعات در این دهکده را انتخاب کنند.

1-5- مسیریابی

در شبکه‌های ادهاک، نودهای شبکه دانش قبلی از توپولوژی شبکه‌ای که درآن قرار دارند، ندارند به همین دلیل مجبورند برای ارتباط با سایر نودها، محل مقصد را در شبکه کشف کنند. در اینجا ایده اصلی این است که یک نود جدید به طور اختیاری حضورش را در سراسر شبکه منتشر می‌کند وبه همسایه‌هایش گوش می‌دهد. به این ترتیب نود تا حدی ازنودهای نزدیکش اطلاع بدست می‌آورد و راه رسیدن به آنها را یاد می‌گیرد به همین ترتیب که پیش رویم همه نودهای دیگر را می‌شناسد و حداقل یک راه برای رسیدن به آنها را می‌داند.

2-5- پروتکل‌های مسیریابی

پروتکل‌های مسیریابی بین هر دو نود این شبکه به دلیل اینکه هر نودی می‌تواند به طور تصادفی حرکت کند و حتی می‌تواند در زمانی از شبکه خارج شده باشد، مشکل می‌باشند. به این معنی یک مسیری که در یک زمان بهینه‌است ممکن است چند ثانیه بعد اصلا این مسیر وجود نداشته باشد. در زیر سه دسته از پروتکل‌های مسیر یابی که در این شبکه‌ها وجود دارد را معرفی می‌کنیم.

  1. Table Driven Protocols: در این روش مسیریابی هرنودی اطلاعات مسیریابی را با ذخیره اطلاعات محلی سایر نودها در شبکه استفاده می‌کند و این اطلاعات سپس برای انتقال داده از طریق نودهای مختلف استفاده می‌شوند.
  2. On Demand Protocols: روش ایجاب می‌کند مسیرهایی بین نودها تنها زمانی که برای مسیریابی بسته موردنیاز است تا جایی که ممکن است بروزرسانی روی مسیرهای درون شبکه ندارد به جای آن روی مسیرهایی که ایجاد شده و استفاده می‌شوند وقتی مسیری توسط یک نود منبع به مقصدی نیاز می‌شود که آن هیچ اطلاعات مسیریابی ندارد، آن فرآیند کشف مسیر را از یک نود شروع می‌کند تا به مقصد برسد. همچنین ممکن است یک نود میانی مسیری تا مقصد داشته باشد. این پروتکل‌ها زمانی موثرند که فرآیند کشف مسیر کمتر از انتقال داده تکرار شود زیرا ترافیک ایجاد شده توسط مرحله کشف مسیر در مقایسه با پهنای باند ارتباطی کمتر است.
  3. Hybrid Protocols: ترکیبی از دو پروتکل بالاست. این پروتکل‌ها روش مسیریابی بردار-فاصله را برای پیدا کردن کوتاه‌ترین به کار می‌گیرند و اطلاعات مسیریابی را تنها وقتی تغییری در توپولوژی شبکه وجود دارد را گزارش می‌دهند. هر نودی در شبکه برای خودش یک zone مسیریابی دارد و رکورد اطلاعات مسیریابی در این zone ها نگهداری می‌شود. مثل ZRP (zone routing protocol ).
  4. پرتکل بردار مسیر : مسیریابی حالت لینک و بردار فاصله پروتکل غالب می‌باشند. آنها از سیستم ناشناخته درونی استفاده می‌نمایند ولی بین سیستم‌های ناشناخته نمی‌باشند. این دو نوع پروتکل می‌توانند در شبکه‌های بزرگ مسیریابی شوند و به این طریق مسیریابی درون حوزه‌ای عملی خواهد شد. مسیریابی حالت لینک می‌تواند اطلاعات زیادی را وارد جدول کند، این عامل تشکیل ترافیک بزرگ می‌باشد. مسیریابی بردار برای درون حوزه‌ها استفاده می‌شود و مانند بردار راه دور است. در این جا یک گره در هر سیستم ناشناخته وجود دارد که به عنوان کل سیستم عمل خواهد کرد. این گره از نوع سخنگو است. این گره جدول مسیریابی را تولید کرده و به گره‌های همجوار می‌فرستد. در این شرایط فقط گره‌های سخنگو در هر سیستم با یکدیگر ارتباط برقرار می‌کنند. این گره می‌تواند در مسیر پیش رود و در سیستم ناشناخته فعال شود.

پروتکل‌های روش اول مسیریابی

  1. DSDV: این پروتکل بر مبنای الگوریتم کلاسیک Bellman-Ford بنا شده‌است. در این حالت هر گره لیستی از تمام مقصدها و نیز تعداد پرش‌ها تا هر مقصد را تهیه می‌کند. هر مدخل لیست با یک عدد شماره گذاری شده‌است. برای کم کردن حجم ترافیک ناشی از بروز رسانی مسیرها در شبکه از incremental -packets استفاده می‌شود. تنها مزیت این پروتکل اجتناب از به وجود آمدن حلقه‌های مسیریابی در شبکه‌های شامل مسیریاب‌های متحرک است. بدین ترتیب اطلاعات مسیرها همواره بدون توجه به این که آیا گره در حال حاضر نیاز به استفاده از مسیر دارد یا نه فراهم هستند.
  2. معایب: پروتکل DSDV نیازمند پارامترهایی از قبیل بازه زمانی بروزرسانی اطلاعات و تعداد بروزرسانی‌های مورد نیاز می‌باشد.
  3. WRP: این پروتکل بر مبنای الگوریتم path-finding بنا شده با این استثنا که مشکل شمارش تا بینهایت این الگوریتم را برطرف کرده‌است. در این پروتکل هر گره، چهار جدول تهیه می‌کند: جدول فاصله، جدول مسیر یابی، جدول هزینه لینک و جدولی در مورد پیام‌هایی که باید دوباره ارسال شوند. تغییرات ایجاد شده در لینک‌ها از طریق ارسال و دریافت پیام میان گره‌های همسایه اطلاع داده می‌شوند.
  4. CSGR: در این نوع پروتکل گره‌ها به دسته‌ها تقسیم بندی می‌شوند. هر گروه یک سر گروه دارد که می‌تواند گروهی از میزبان‌ها را کنترل و مدیریت کند. از جمله قابلیت‌هایی که عمل دسته بندی فراهم می‌کند می‌توان به اختصاص پهنای باند و دسترسی به کانال اشاره کرد. این پروتکل از DSDV به عنوان پروتکل مسیریابی زیر بنایی خود استفاده می‌کند. نیز در این نوع هر گره دو جدول یکی جدول مسیریابی و دیگری جدول مریوط به عضویت در گره‌های مختلف را فراهم می‌کند.
  5. معایب: گره‌ای که سر واقع شده سربار محاسباتی زیادی نسبت به بقیه دارد و به دلیل اینکه بیشتر اطلاعات از طریق این سرگروه‌ها برآورده می‌شوند در صورتی که یکی از گره‌های سرگروه دچار مشکل شود کل و یا بخشی از شبکه آسیب می‌بیند.
  6. STAR: این پروتکل نیاز به بروز رسانی متداوم مسیرها نداشته و هیچ تلاشی برای یافتن مسیر بهینه بین گره‌ها نمی‌کند.

پروتکل‌های روش دوم مسیریابی

  1. SSR: این پروتکل مسیرها را بر مبنای قدرت و توان سیگنال‌ها بین گره‌ها انتخاب می‌کند. بنابراین مسیرهایی که انتخاب می‌شوند نسبتا قوی تر هستند. می‌توان این پروتکل را به دو بخش DRP و SRP تقسیم کرد. DRP مسئول تهیه و نگهداری جدول مسیریابی و جدول مربوط به توان سیگنال‌ها می‌باشد.SRP نیز بسته‌های رسیده را بررسی می‌کند تا در صورتی که آدرس گره مربوط به خود را داشته باشد آن را به لایه‌های بالاتر بفرستد.
  2. DSR: در این نوع، گره‌های موبایل بایستی حافظه‌هایی موقت برای مسیرهایی که از وجود آنها مطلع هستند فراهم کنند. دو فاز اصلی برای این پروتکل در نظر گرفته شده‌است:کشف مسیر و بروز رسانی مسیر. فاز کشف مسیر از route request/reply packet ها و فاز بروز رسانی مسیر از تصدیق‌ها و اشتباهای لینکی استفاده می‌کند.
  3. TORA: بر اساس الگوریتم مسیریابی توزیع شده بنا شده و برای شبکه‌های موبایل بسیار پویا طراحی شده‌است. این الگوریتم برای هر جفت از گره‌ها چندین مسیر تعیین می‌کند و نیازمند کلاک سنکرون می‌باشد. سه عمل اصلی این پروتکل عبارتند از: ایجاد مسیر. بروز رسانی مسیر و از بین بردن مسیر.
  4. AODV: بر مبنای الگوریتم DSDV بنا شده با این تفاوت که به دلیل مسیریابی تنها در زمان نیاز میزان انتشار را کاهش می‌دهد. الگوریتم کشف مسیر تنها زمانی آغاز به کار می‌کند که مسیری بین دو گره وجود نداشته باشد.
  5. RDMAR: این نوع از پروتکل فاصلۀ بین دو گره را از طریق حلقه‌های رادیویی و الگوریتم‌های فاصله یابی محاسبه می‌کند. این پروتکل محدوده جستجوی مسیر را مقدار مشخص و محدودی تایین می‌کند تا بدین وسیله از ترافیک ناشی از سیل آسا در شبکه کاسته باشد. تقسیم بندی های مختلفی در مورد پروتوکل های مسیر یابی شبکه های Mobile ad hoc وجود دارد که از این میان می توان به ۲ نوع زیر اشاره کرد:

تقسیم بندی اول :

  1. Pro active (Table driven)
  2. Reactive (On demand)
  3. Hybrid (Table driven & On demand)

هر کدام از این انواع خود شامل پروتوکل هایی هستند که در جدول زیر به چند مورد اشاره شده است:

تقسیم بندی دوم:

  1. Flat routing protocols
  2. Hierarchal routing approaches
  3. GPS Augmented geographical routing approaches

در اینجا به توضیحاتی در مورد پروتوکل های تقسیم بندی اول می پردازیم:

: Table driven pro active در پروتوکلهای از این نوعnode ها مدام در حال جستجوی اطلاعات مسیر یابی جدید درون شبکه هستند به صورتی که حتی با تغییر مکان node ها در صورت نیاز به راحتی می توان مسیر مناسبی را یافته و برای ارسال و دریافت اطلاعات بین هر دو node ی استفاده کرد. به عبارت بهتر می توان گفت که در این شبکه ها مسیر ها از قبل موجود هستند.و به محض آنکه node ی اقدام به ارسال داده به node دیگری کند قادر خواهد بود مسیر موجود را از روی اطلاعات از قبل جمع آوری شده شناسایی کرده و مورد استفاده قرار دهد و لذا تاخیری در این مورد متوجه node نیست.

DSDV   : این پروتوکل بر مبنای الگوریتم کلاسیک Bellman-Ford بنا شده است.در این حالت هر node لیستی از تمام مقصد هاو نیز تعداد hop ها تا هر مقصد را تهیه می کند.هر مدخل لیست با یک عدد شماره گزاری شده است. برای کم کردن حجم ترافیک ناشی از به روز رسانی مسیر ها در شبکه از incremental packets  استفاده می شود.تنها مزیت این پروتوکل اجتناب از به وجود آمدن حلقه های مسیر یابی در شبکه های شامل مسیر یاب های متحرک است.بدین ترتیب اطلاعات مسیر ها همواره بدون توجه به این که آیا node در حال حاضر نیاز به استفاده از مسیر دارد یا نه فراهم هستند.

معایب : پروتوکل DSDV نیازمند پارامترهایی از قبیل بازه ی زمانی به روز رسانی اطلاعات و تعداد به روز رسانی های مورد نیاز می باشد.

: WRP این پروتوکل بر مبنای الگوریتم path-finding بنا شده با این استثنا که مشکل count-to-infinity این الگوریتم را برطرف کرده است. در این پروتوکل هر node , ۴ جدول تهیه می کند:

  1. جدول فاصله
  2. جدول مسیر یابی
  3. جدول link-cost
  4. جدولی در مورد پیامهایی که باید دوباره ارسال شوند.

تغییرات ایجاد شده در لینکها از طریق ارسال و دریافت پیام میان node های همسایه اطلاع داده می شوند.

: CSGR در این نوع پروتوکل node ها به دسته ها یا cluster هایی تقسیم بندی می شوند. هر گروه یک cluster head دارد که می تواند گروهی از host ها را کنترل و مدیریت کند.از جمله قابلیت هایی که عمل  clustering  فراهم می کند می توان به اختصاص پهنای باندو channel access اشاره کرد.این پروتوکل از DSDV  به عنوان پروتوکل مسیریابیی زیر بنایی خود استفاده می کند . نیز در این نوع هر node دو جدول یکی جدول مسیریابیی و دیگری جدول مریوط به عضویت در node های مختلف را فراهم می کند.

معایب : node ی که head واقع شده سربار محاسباتی زیادی نسبت به بقیه داردو به دلیل اینکه بیشتر اطلاعات از طریق این head ها برآورده می شونددر صورتی که یکی از node های head دچار مشکل شود کل و یا بخشی از شبکه آسیب می بیند.

: STAR این پروتوکل نیاز به به روز رسانی متداوم مسیر ها نداشته و هیچ تلاشی برای یافتن مسیر بهینه بین node ها نمی کند.

:On demand Reactiveدر این نوع پروتوکل مسیر ها تنها زمانی کشف می شوند که مبدا اقدام به برقراری ارتباط با node دیگری کند.زمانی که یک node بخواهد با node دیگری ارتباط برقرار کند بایستی فرایند کشف مسیر ( Route Discovery Process ) را در شبکه فراخوانی کند.در این حالت قبل از بر قرار شدن ارتباط , تاخیر قابل توجهی مشاهده می شود.

: SSR این پروتوکل مسیرها را بر مبنای قدرت و توان سیگنالها بین node ها انتخاب می کند. بنابراین مسیرهایی که انتخاب می شوندد نسبتا قوی تر هستند . می توان این پروتوکل را به ۲ بخش DRP) Dynamic Routing Protocol)  و SRP ( Static Routing Protocol) تقسیم کرد .

DRP: مسئول تهیه و نگهداری جدول مسیریابی و جدول مربوط به توان سیگنال ها می باشد.

SRP: نیز packet های رسیده را بررسی می کند تا در صورتی که آدرس node مربوط به خود را داشته باشد آن را به لایه های بالاتر بفرستد و در غیر این صورت به شبکه.

: DSR در این نوع node های موبایل بایستی cache هایی برای مسیر هایی که از وجود آنها مطلع هستند فراهم کنند.دو فاز اصلی برای این پروتوکل در نظر گرفته شده است کشف مسیر و به روز رسانی مسیر. فاز کشف مسیر از route request/reply packet ها و فاز به روز رسانی مسیر از acknowledgement ها و error های لینکی استفاده می کند.

: TORA بر اساس الگوریتم مسیر یابی توزیع شده بنا شده و برای شبکه های mobile بسیار پویا طراحی شده است.این الگوریتم برای هر جفت از node ها چندین مسیر تعیین می کند و نیازمند clock سنکرون می باشد. ۳ عمل اصلی این پروتوکل عبارتند از :ایجاد مسیر. به روز رسانی مسیر و از بین بردن مسیر.

: AODV بر مبنای الگوریتم DSDV بنا شده با این تفاوت که به دلیل مسیریابی تنها در زمان نیاز میزان Broad casting را کاهش می دهد.الگوریتم کشف مسیر تنها زمانی آغاز به کار می کند که مسیری بین ۲ node وجود نداشته باشد .

: RDMAR این نوع از پروتوکل فاصله ی بین ۲ node را از طریق حلقه های رادیویی و الگوریتم های فاصله یابی محاسبه می کند. این پروتوکل محدوده ی جستجوی مسیر را مقدار مشخص و محدودی تایین می کند تا بدین وسیله از ترافیک ناشی از flooding در شبکه کاسته باشد.

Hybrid (Pro-active / Reactive): این مورد با ترکیب دو روش قبلی سعی در کاهش معایب کرده و از ویژگی های خوب هر دو مورد بهره می برد. این پروتوکل جدید ترین کلاس پروتوکل ها در این راستا می باشد. معروفترین پروتوکل از این نوع می توان به ZRP( Zone Routing protocol)  اشاره کرد.این پروتوکل از ویژگی های نوع Pro active برای مسیریابی node های نزدیک به هم و از ویژگی های نوع Reactive برای مسیر یابی node های دورتر استفاده می کند.

: ZRPنوعی از clustering است با این تفاوت که در این پروتوکل هر Node خود head بوده و به عنوان عضوی از بقیه ی cluster ها می باشد. به دلیل hybrid بودن کارایی بهتری دارد.

شاید بتوان شبکه های ad hoc را آسب پذیر ترین شبکه ها از لحاظ امنیتی و ضعیفترین در مقابل حملات نفوذگران دانست. به همین دلیل برخورد با این مسئله و رفع مشکلات مربوطه از مهمترین دغدغه های شخصی است که اقدام به را ه اندازی چنین شبکه ای می کند.از جمله مواردی که منجر به نا امن شدن این شبکه ها شده است می توان به موارد زیر اشاره کرد:

ـ کانال رادیویی از نوع broad cast به اشتراک گزارده شده.

  1. محیط عملیاتی نا امن
  2. نبود شناسایی (authentication) متمرکز.
  3. دسترسی محدود به منابع
  4. مشکلات و آسیت پزیری های فیزیکی.

زمانی که در مورد امنیت شبکه بحث می شود معمولا به عناوین چندی توجه می شود:

: Availability بدین معنی که شبکه در تمام زمان ها حتی در مواردی که دچار حمله شده بتواند به عمل خود ادامه بدهد.

: Confidentiality اطمینان از اینکه اطلاعات مشخص و معینی در اختیار کاربران خاصی قرار نگیرد.

: Authentication توانایی یک node در شناسایی و تشخیص node ی که با وی در ارتباط است.

: Integrity تضمین اینکه یک پیام پس از منتشر شدن تخریب نشده و از بین نمی رود.

: Non-repudiation فرستنده ی پیام نتواند ارسال خود را انکار کنند.

یک شبکه ی ad hoc به دلیل نداشتن ساختار ثابت و مشخص و نیز ارتباطات پویا بین node ها نیازمند ملاحظات امنیتی بیشتری نسبت به انواع دیگر شبکه است.

همان طور که قبلا نیز بیا ن شد در این شبکه ها هر node ی هم مسیر یاب است و هم end – system . بدین ترتیب node ها از هم متمایز نیستند و به این دلیل نیاز به یک پروتوکل مسیر بایی امن حس می شود. که در این راستا معمولا پروتکل های multi hop بث کار گرفته می شوند.

3-5- معنای حمل

این طرح‌ها بسته به معنای خود متفاوت هستند.

  • حمل Unicast برای یک پیام به حالت ویژه
  • بخش عامل حمل پیام به تمام گره‌های شبکه
  • حمل multicast برای یک گروه گره که در دریافت پیام نقش دارند.
  • حمل anycast برای ارسال به هر گروه و به خصوص نزدیکترین منبع. Unicast حالت غالب حمل پیام است و این جا بر آلگوریتم unicastتاکید داریم.

4-5- توزیع توپولوژی

شبکه‌های کوچک دارای جداول دستی هستند. شبکه‌های بزرگ توپولوژی پیچیده دارند. و به سرعت تغییر می‌کنند. به این طریق ساختار جداول غیرقابل طراحی خواهد شد. بیشتر این شبکه‌های تلفنی کلیدی (pstn) از این جداول استفاده می‌کنند و نقایص در مسیر این سیستم شناخته و رفع خواهند شد. مسیر یابی دینامیکی تلاشی برای حل مسئله و تشکیل ساختار خودکار جداول است. این براساس اطلاعات پروتکل مسیریابی عملی است. به این طریق شبکه‌ها از هر نقص ایمن خواهند شد. این دینامیک در اینترنت نقش فعال دارد. طراحی پروتکل‌ها به یک تماس ماهرانه نیاز دارد. نباید فرض کرد که شبکه سازی به نقطه اتوماسیون کامل رسیده‌است.

 

 

Byadmin

پیکربندی شبکه های Wireless

پیکربندی شبکه های Wireless

امروزه از شبکه هاي بدون کابل( Wireless )در ابعاد متفاوت و با اهداف مختلف، استفاده مي شود. برقراري يک تماس از طريق دستگاه موبايل، دريافت يک پيام بر روي دستگاه pager و دريافت نامه هاي الکترونيکي از طريق يک دستگاه  PDA، نمونه هائي از کاربرد اين نوع از شبکه ها مي باشند. در تمامي موارد فوق، داده و ياصوت از طريق يک شبکه بدون کابل در اختيار سرويس گيرندگان قرارمي گيرد. درصورتي که يک کاربر، برنامه و يا سازمان تمايل به ايجاد پتاسيل قابليت حمل داده راداشته باشد، مي تواند از شبکه هاي بدون کابل استفاده نمايد. يک شبکه بدون کابل علاوه بر صرفه جوئي در زمان و هزينه کابل کشي، امکان بروز مسائل مرتبط با يک شبکه کابلي را نخواهد داشت.

از شبکه هاي بدون کابل مي توان در مکان عمومي، کتابخانه ها، هتل ها، رستورانها ومدارس استفاده نمود. در تمامي مکان هاي فوق، مي توان امکان دستيابي به اينترنت رانيز فراهم نمود. يکي از چالش هاي اصلي اينترنت بدون کابل، به کيفيت سرويس( QoS) ارائه شده برمي گردد.  در صورتي که به هر دليلي بر روي خط پارازيت ايجاد گردد، ممکن است ارتباط ايجاد شده قطع و يا امکان استفاده مطلوب از آن وجود نداشته باشد.

1-3- امنيت

براي پياده سازي امنيت در شبکه هاي بدون کابل از سه روش متفاوت استفاده مي شود:

* Wired Equivalent Privacy : WEP در روش فوق، هدف توقف رهگيري سيگنال هاي فرکانس راديوئي توسط کاربران غير مجاز بوده وبراي شبکه هاي کوچک مناسب است. علت اين امر به عدم وجود پروتکل خاصي به منظور مديريت “کليد ” بر مي گردد. هر “کليد ” مي بايست به صورت دستي براي سرويس گيرندگان تعريف گردد. بديهي است در صورت بزرگ بودن شبکه، فرآيند فوق از جمله عمليات وقت گير براي هر مدير شبکه خواهد بود. WEPمبتني بر الگوريتم رمزنگاري RC 4 است که توسط    Data System RSA  ارائه شده است. در اين رابطه تمامي سرويس گيرندگان و Point Aceessها بگونه اي پيکربندي مي گردند که از يک کليد مشابه براي رمزنگاري و رمزگشائي استفاده نمايند.

* .Service Set Identifier :SSID روش فوق به منزله يک “رمزعبور” بوده که امکان تقسيم يک شبکه WLANبه چندين شبکه متفاوت ديگر که هر يک داراي يک شناسه منحصر بفرد مي باشند را فراهم مي نمايد . شناسه هاي فوق، مي بايست براي هر access pointتعريف گردند. يک کامپيوتر سرويس گيرنده به منظور دستيابي به هر شبکه، مي بايست بگونه اي پکربندي گردد که داراي شناسه SSIDمربوط به شبکه مورد نظر باشد. در صورتي که شناسه کامپيوتر سرويس گيرنده با شناسه شبکه مورد نظر مطابقت نمايد، امکان دستيابي به شبکه براي سرويس گيرنده فراهم مي گردد.

* فيلترينگ آدرس هاي MAC (Control Access Media): در روش فوق، ليستي از آدرس هاي MAC مربوط به کامپيوترهاي سرويس گيرنده، براي يک Point Access تعريف مي گردد. بدين ترتيب، صرفا” به کامپيوترهاي فوق امکان دستيابي داده مي شود. زماني که يک کامپيوتر درخواستي را ايجاد مي نمايد، آدرس MACآن با آدرس MACموجود در Access Point مقايسه شده و در صورت مطابقت آنان با يکديگر، امکان دستيابي فراهم مي گردد. اين روش از لحاظ امنيتي شرايط مناسبي را ارائه مي نمايد، ولي با توجه به اين که مي بايست هر يک از آدرس هاي MAC را براي هر Access point تعريف نمود، زمان زيادي صرف خواهد شد. استفاده از روش فوق، صرفا” در شبکه هاي کوچک بدون کابل پيشنهاد مي گردد.

 

2-3- پيکربندی يک شبکه Wireless

سخت افزار مورد نياز به منظور پيکربندی يک شبکه بدون کابل به ابعاد شبکه موردنظر بستگی دارد . عليرغم موضوع فوق ، در اين نوع شبکه ها اغلب و شايد هم قطعا ً به يک  access pointو يک اينترفيس کارت شبکه نياز خواهد بود . در صورتی که قصد ايجاد يک شبکه موقت بين دو کامپيوتر را داشته باشيد ، صرفا” به دو کارت شبکه بدون کابل نياز خواهيد داشت.

Access Point چيست؟

سخت افزار فوق ، به عنوان يک پل ارتباطی بين شبکه های کابلی و دستگاههای بدون کابل عمل می نمايد . با استفاده از سخت افزار فوق، امکان ارتباط چندين دستگاه به منظور دستيابی به شبکه فراهم می گردد access point می تواند دارای عملکردی مشابه يک روتر نيز باشد. در چنين مواردی انتقال اطلاعات در محدوده وسيعتری انجام شده و داده از يک access point به access pointديگر ارسال می گردد.

شکل 1-3 : دستگاه Access Point

 

کارت شبکه بدون کابل

هر يک از دستگاههای موجود بر روی يک شبکه بدون کابل ، به يک کارت شبکه بدون کابل نياز خواهند داشت . يک کامپيوتر  Laptop، عموماً دارای يک اسلات  PCMCIA است که کارت شبکه درون آن قرار می گيرد . کامپيوترهای شخصی نيز به يک کارت شبکه داخلی که معمولا” دارای يک آنتن کوچک و يا آنتن خارجی است، نيازخواهند داشت .آنتن های فوق بر روی اغلب دستگاهها ،اختياری بوده و افزايش سيگنال بر روی کارت را بدنبال خواهد داشت.

شکل 2-3کارت شبکه بدون کابل

پيکربندی يک شبکه بدون کابل

به منظور پيکربندی يک شبکه بدون کابل از دو روش متفاوت استفاده می‌گردد:

* روش  : Infrastructure، به اين نوع شبکه ها، hosted و يا managed نيز گفته می شود . در اين روش از يک و يا چندين access point(موسوم به gateway و يا روترهای بدون کابل )که به يک شبکه موجود متصل می گردند ، استفاده می شود . بدين ترتيب دستگاههای بدون کابل،امکان استفاده از منابع موجود بر روی شبکه نظير چاپگر و يا اينترنت را بدست می آورند.

* روش  : Ad-Hoc به اين نوع شبکه ها، unmanaged و يا peer to peer نيز گفته می شود. در روش فوق هر يک از دستگاهها مستقيما” به يکديگر متصل می گردند. مثلا” يک شخص با دارا بودن يک دستگاه کامپيوتر laptop مستقر در محوطه منزل خود می تواتند با کامپيوتر شخصی موجود در منزل خودبه منظور دستيابی به اينترنت، ارتباط برقرار نمايد.

پس از تهيه تجهيزات سخت افزاری مورد نياز به منظور ايجاد يک شبکه بدون کابل، درادامه می بايست تمامی تجهيزات تهيه شده را با هدف ايجاد و سازماندهی يک شبکه به يکديگر متصل تا امکان ارتباط بين آنان فراهم گردد. قبل از نصب و پيکربندی يک شبکه بدون کابل، لازم است به موارد زير دقت نمائيد:

* تهيه درايورهای مربوطه از فروشنده سخت افزار و کسب آخرين اطلاعات مورد نياز

* فاصله بين دو کامپيوتر می بايست کمتر از يکصد متر باشد.

*هر يک از کامپيوترهای موجود می بايست بر روی يک طبقه مشابه باشند.

*استفاده از تجهيزات سخت افزاری مربوط به يک توليد کننده، دارای مزايا و معايبی است. در اين رابطه پيشنهاد می گردد ليستی از ويژگی های هر يک ازسخت افزارهای مورد نياز عرضه شده توسط توليد کنندگان متعدد تهيه شود تاامکان مقايسه و اخذ تصميم مناسب، فراهم گردد.

مراحل لازم به منظور نصب يک شبکه ( فرضيات : ما دارای يک شبکه کابلی موجودهستيم و قصد پياده سازی يک شبکه بدون کابل به منظور ارتباط دستگاههای بدون کابل به آن را داريم ):

* اتصال  access point به برق و سوکت مربوط به شبکه اترنت

* پيکربندی access point (معمولا” از طريق يک مرورگر وب ) تا امکان مشاهده آن توسط شبکه موجود فراهم گردد. نحوه پيکربندی access pointبستگی به نوع آن دارد.

* پيکربندی مناسب کامپيوترهای سرويس گيرنده به منظور ارتباط با  access poin (در صورتی که تمامی سخت افزارهای شبکه بدون کابل از يک توليدکننده تهيه شده باشند ، عموماً با تنظيمات پيش فرض هم می توان شبکه را فعال نمود . به هر حال پيشنهاد می گردد همواره به راهنمای سخت افزار تهيه شده به منظور پيکربندی بهينه آنان ، مراجعه گردد).

3-3- پهناي باند و ميزان تاخير

پهناي باند از جمله واژه هاي متداول در دنياي شبکه هاي کامپيوتري است که به نرخ انتقال داده توسط يک اتصال شبکه و يا يک اينترفيس، اشاره مي نمايد. اين واژه ازرشته مهندسي برق اقتباس شده است. در اين شاخه از علوم، پهناي باند نشان دهنده مجموع فاصله و يا محدوده بين بالاترين و پائين ترين سيگنال بر روي کانال هاي مخابراني ( باند )، است. به منظور سنجش اندازه پهناي باند از واحد تعداد بايت درثانيه و يا  bpsاستفاده مي شود.

پهناي باند تنها عامل تعيين کننده سرعت يک شبکه از زاويه کاربران نبوده و يکي ديگراز عناصر تاثيرگذار، “ميزان تاخير” در يک شبکه است که مي تواند برنامه هاي متعددي را که بر روي شبکه اجراء مي گردند، تحت تاثير قرار دهد.

 

 

پهناي باند چيست ؟

توليد کنندگان تجهيزات سخت افزاري شبکه در زمان ارائه محصولات خود تبليغات زيادي را در ارتباط با پهناي باند، انجام مي دهند. اکثر کاربران اينترنت نسبت به ميزان پهناي باند مودم خود و يا سرويس اينترنت  braodbandداراي آگاهي لازم مي باشند. پهناي باند، ظرفيت اتصال ايجاد شده را مشخص نموده و بديهي است که هراندازه ظرفيت فوق بيشتر باشد، امکان دستيابي به منابع شبکه با سرعت بيشتري فراهم مي گردد. پهناي باند، ظرفيت تئوري و يا عملي يک اتصال شبکه و يا يک اينترفيس را مشخص نموده که در عمل ممکن است با يکديگر متفاوت باشند. مثلا” يک مودم V. 90 پهناي باندي معادل  kbps٥٦ را در حالت سقف پهناي باند حمايت مي نمايد ولي با توجه به محدوديت هاي خطوط تلفن و ساير عوامل موجود، عملا” امکان رسيدن به محدوده فوق وجود نخواهد داشت . يک شبکه اترنت سريع نيز از لحاظ تئوري قادر به حمايت پهناي باندي معادل Mbps ١٠٠ است، ولي عملا” اين وضعيت در عمل محقق نخواهد شد ( تفاوت ظرفيت تئوري پهناي باند با ظرفيت واقعي).

پهناي باند بالا و broadband

در برخي موارد واژه هاي “پهناي باند بالا و” braodband ”  به جاي يکديگر استفاده مي گردند. کارشناسان شبکه در برخي موارد از واژه “پهناي باند بالا ” به منظورمشخص نمودن سرعت بالاي اتصال به اينترنت استفاده مي نمايند . در اين رابطه تعاريف متفاوتي وجود دارد . پهناي باندي بين kbps٦٤ تا Kbps٣٠٠ و يا اين نوع اتصالات، بيشتر را ارائه مي نمايند. پهناي باند بالا با broadbandمتفاوت است.

broadband نشان دهنده روش استفاده شده به منظور ايجاد يک ارتباط است در، صورتي که پهناي باند، نرخ انتقال داده از طريق محيط انتقال را نشان مي دهد.

اندازه‌گيري پهناي باند شبکه

به منظور اندازه گيري پهناي باند اتصال شبکه مي توان از ابزارهاي متعددي استفاده نمود. براي اندازه گيري پهناي باند در شبکه هاي محلي ( LAN )،از برنامه هائي نظير ttcp و netprefاستفاده مي گردد. در زمان اتصال به اينترنت و به منظور تست ،پهناي باند مي توان از برنامه هاي متعددي استفاده نمود . تعداد زيادي از برنامه هاي فوق را مي توان با مراجعه به صفحات وب عمومي استفاده نمود . صرف‌نظر از نوع نرم افزاري که از آن به منظور اندازه گيري پهناي باند استفاده مي گردد، پهناي باند داراي محدوده بسيار متغيري است که اندازه گيري دقيق آن امري مشکل است.

تاخير

پهناي باند صرفاً يکي از عناصرتاثيرگذار درسرعت يک شبکه است.

تاخير( Latency)  که نشاندهنده ميزان تاخير در پردازش داده در شبکه است، يکي ديگر از عناصر مهم در ارزيابي کارآئي و سرعت يک شبکه است که داراي ارتباطي نزديک با پهناي باند مي باشد. از لحاظ تئوري سقف پهناي باند ثابت است. پهناي باند واقعي متغير بوده و مي تواند عامل بروز تاخير در يک شبکه گردد. وجود تاخير زياد در پردازش داده در شبکه و در يک محدوده زماني کوتاه مي تواند باعث بروز يک بحران در شبکه شده و پيامد آن پيشگيري از حرکت داده بر روي محيط انتقال و کاهش استفاده موثر از پهناي باند باشد.

 

 

تاخير و سرويس اينترنت ماهواره‌اي

دستيابي به اينترنت با استفاده از ماهواره به خوبي تفاوت بين پهناي باند و تاخيررا نشان مي دهد . ارتباطات مبتني بر ماهواره داراي پهناي باند و تاخير بالائي مي باشند.مثلاً زماني که کاربري درخواست يک صفحه وب را مي نمائيد، مدت زماني که بطول مي انجامد تا صفحه درحافظه مستقر گردد با اين که کوتاه بنظر مي آيد ولي کاملاً ملموس است. تاخير فوق به دليل تاخير انتشار است. علاوه بر تاخير انتشار، يک شبکه ممکن است با نوع هاي ديگري از تاخير مواجه گردد. تاخير انتقال (مرتبط با خصايص فيزيکي محيط انتقال) و تاخير پردازش (ارسال درخواست از طريق سرويس دهندگان پروکسي و يا ايجاد hops بر روي اينترنت) دو نمونه متداول در اين زمينه مي باشند.

اندازه‌گيري تاخير در يک شبکه

از ابزارهاي شبکه اي متعددي نظير  pingو traceroute مي توان به منظور و اندازه گيري ميزان تاخير در يک شبکه استفاده نمود . برنامه هاي فوق فاصله زماني بين ارسال يک بسته اطلاعاتي از مبداء به مقصد و برگشت آن را محاسبه مي‌نمايند به زمان فوق  round-trip گفته مي شود. round-tripتنها روش موجود به منظور تشخيص و يا بدست آوردن ميزان تاخير در يک شبکه نبوده و در اين رابطه مي توان ازبرنامه هاي متعددي استفاده نمود.

پهناي باند و تاخير دو عنصر تاثير گذار در کارائي يک شبکه مي باشند .معمولا” از واژه QoS ( Quality of Service )به منظور نشان دادن وضعيت کارآئي يک شبکه استفاده مي گردد که در آن دو شاخص مهم پهناي باند و تاخير مورد توجه قرار مي گيرد.

 

4-3- فيبر نوري

فيبر نوري يکي از محيط هاي انتقال داده با سرعت بالا است. از فيبر نوري درموارد متفاوتي نظير: شبکه هاي تلفن شهري و بين شهري، شبکه هاي کامپيوتري و اينترنت استفاده مي گردد. فيبرنوري رشته اي از تارهاي شيشه اي بوده که هر يک ازتارها داراي ضخامتي معادل تار موي انسان را داشته و از آنان براي انتقال اطلاعات درمسافت هاي طولاني استفاده مي شود

1-4-3- مباني فيبر نوري

فيبر نوري، رشته اي از تارهاي بسيار نازک شيشه اي بوده که قطر هر يک ازتارها نظير قطر يک تار موي انسان است. تارهاي فوق در کلاف هائي سازماندهي و کابل‌هاي نوري را بوجود مي آورند. از فيبر نوري بمنظور ارسال سيگنال هاي نوري در مسافت‌هاي طولاني استفاده مي شود.

يک فيبر نوري از سه بخش متفاوت تشکيل شده است:

* هسته(Core) : هسته نازک شيشه اي در مرکز فيبر که سيگنال هاي نوري در آن حرکت مي نمايند.

* روکش  (Cladding)بخش خارجي فيبر بوده که دورتادور هسته را احاطه  کرده و باعث برگشت نورمنعکس شده به هسته مي گردد.

*  . (Coating Buffer) بافر رويه روکش پلاستيکي که باعث حفاظت فيبر در مقابل رطوبت و ساير موارد آسيب پذير، است.

شکل 3-3- اجزای فیبر نوری

صدها و هزاران نمونه از رشته هاي نوري فوق در دسته هائي سازماندهي شده و کابلهاي نوري را بوجود مي آورند. هر يک از کلاف هاي فيبر نوري توسط يک روکش هائي با نام Jacketمحافظت مي گردند.

فيبر هاي نوري در دو گروه عمده ارائه مي گردند:

* فيبرهاي تک حالته. (Single-Mode)   به منظور ارسال يک سيگنال در هر فيبر استفاده مي شود (نظير : تلفن)

* فيبرهاي چندحالته. (Multi-Mode)  بمنظور ارسال چندين سيگنال در يک فيبر استفاده مي شود (نظير : شبکه هاي کامپيوتري)

فيبرهاي تک حالته داراي يک هسته کوچک ( تقريبا” ٩ ميکرون قطر ) بوده و قادر به ارسال نور ليزري مادون قرمز ( طول موج از ١٣٠٠ تا ١٥٥٠ نانومتر) مي باشند. فيبرهاي چند حالته داراي هسته بزرگتر (تقريبا5/62 ميکرون قطر) و قادر به ارسال نورمادون قرمز از طريق LEDمي باشند.

 

ارسال نور در فيبر نوري

فرض کنيد، قصد داشته باشيم با استفاده از يک چراغ قوه يک راهروي بزرگ ومستقيم را روشن نمائيم. همزمان با روشن نمودن چراغ قوه، نور مربوطه در طول مسيرمسفقيم راهرو تابانده شده و آن را روشن خواهد کرد.

با توجه به عدم وجود خم و يا پيچ در راهرو در رابطه با تابش نور چراغ قوهمشکلي وجود نداشته و چراغ قوه مي تواند (با توجه به نوع آن) محدوده مورد نظر راروشن کرد. در صورتيکه راهروي فوق داراي خم و يا پيچ باشد ، با چه مشکلي برخوردخواهيم کرد؟ در اين حالت مي توان از يک آيينه در محل پيچ راهرو استفاده تا باعث انعکاس نور از زاويه مربوطه گردد.در صورتيکه راهروي فوق داراي پيچ هاي زيادي باشد، چه کار بايست کرد؟ در چنين حالتي در تمام طول مسير ديوار راهروي مورد نظر،مي بايست از آيينه استفاده کرد. بدين ترتيب نور تابانده شده توسط چراغ قوه (با يک زاويه خاص) از نقطه اي به نقطه اي ديگر حرکت کرده (جهش کرده و طول مسيرراهرو را طي خواهد کرد). عمليات فوق مشابه آنچيزي است که در فيبر نوري انجام مي‌گيرد.

نور، در کابل فيبر نوري از طريق هسته (نظير راهروي مثال ارائه شده) و توسط جهش هاي پيوسته با توجه به سطح آبکاري شده(Cladding) (مشابه ديوارهاي شيشه اي مثال ارائه شده) حرکت مي کند.(مجموع انعکاس داخلي). با توجه به اينکه سطح آبکاري شده ، قادر به جذب نور موجود در هسته نمي باشد، نور قادر به حرکت درمسافت هاي طولاني مي باشد. برخي از سيگنا ل هاي نوري بدليل عدم خلوص شيشه موجود ، ممکن است دچار نوعي تضعيف در طول هسته گردند. ميزان تضعيف سيگنال نوري به درجه خلوص شيشه و طول موج نور انتقالي دارد. ( مثلا” موج با طول ٨٥٠نانومتر بين ٦٠ تا ٧٥ درصد در هر کيلومتر ، موج با طول ١٣٠٠ نانومتر بين ٥٠ تا ٦٠درصد در هر کيلومتر ، موج با طول ١٥٥٠ نانومتر بيش از ٥٠ درصد در هر کيلومتر)

2-4-3- سيستم رله فيبر نوري

بمنظور آگاهي از نحوه استفاده فيبر نوري درسيستم هاي مخابراتي ، مثالي را دنبال خواهيم کرد که مربوط به يک فيلم سينمائي و يا مستند در رابطه با جنگ جهاني دوم است . در فيلم فوق دو ناوگان دريائي که بر روي سطح دريا در حال حرکت مي باشند ،نياز به برقراري ارتباط با يکديگر در يک وضعيت کاملا” بحراني و توفاني را دارند.

يکي از ناوها قصد ارسال پيام براي ناو ديگر را دارد.کاپيتان ناو فوق پيامي براي يک ملوان که بر روي عرشه کشتي مستقر است، ارسال مي دارد. ملوان فوق پيام دريافتي را به مجموعه اي از کدهاي مورس (نقطه و فاصله) ترجمه مي نمايد.  در ادامه ملوان مورد نظر با استفاده از يک نورافکن اقدام به ارسال پيام براي ناو ديگر مي نمايد.يک ملوان بر روي عرشه کشتي دوم، کدهاي مورس ارسالي را مشاهده مي نمايد. درادامه ملوان فوق کدهاي فوق را به يک زبان خاص ( مثلاً انگليسي) تبديل و آنها رابراي کاپيتان ناو ارسال مي دارد. فرض کنيد فاصله دو ناو فوق از يکديگر بسيار زياد (هزاران مايل) بوده و بمنظور برقراي ارتباط بين آنها از يک سيستم مخابراتي مبتني برفيبر نوري استفاده گردد.

سيستم رله فيبر نوري از عناصر زير تشکيل شده است:

* فرستنده . مسئول توليد و رمزنگاري سيگنال هاي نوري است.

* فيبر نوري مديريت سيکنال هاي نوري در يک مسافت را برعهده مي گيرد.

* بازياب نوري . به منظور تقويت سيگنال‌هاي نوري در مسافت هاي طولاني استفاده مي گردد.

* دريافت کننده نوري . سيگنا ل هاي نوري را دريافت و رمزگشائي مي نمايد.

در ادامه به بررسي هر يک از عناصر فوق خواهيم پرداخت.

فرستنده

وظيفه فرستنده، مشابه نقش ملوان بر روي عرشه کشتي ناو فرستنده پيام است.فرستنده سيگنال هاي نوري را دريافت و دستگاه نوري را بمنظور روشن و خاموششدن در يک دنباله مناسب ( حرکت منسجم ) هدايت مي نمايد. فرستنده، از لحاظ فيزيکي در مجاورت فيبر نوري قرار داشته و ممکن است داراي يک لنز بمنظور تمرکز نور در فيبر باشد. ليزرها داراي توان بمراتب بيشتري نسبت به  LEDمي باشند. قيمت آنها نيز در مقايسه با LEDبمراتب بيشتراست. متداولترين طول موج سيگنال هاي نوري، ٨٥٠ نانومتر، ١٣٠٠ نانومتر و ١٥٥٠ نانومتر است.

بازياب (تقويت کننده) نوري

همانگونه که قبلا” اشاره گرديد، برخي از سيگنال ها در موارديکه مسافت ارسال اطلاعات طولاني بوده (بيش از يک کيلومتر) و يا از مواد خالص براي تهيه فيبر نوري(شيشه) استفاده نشده باشد، تضعيف و از بين خواهند رفت. در چنين مواردي وبمنظور تقويت (بالا بردن) سيگنال هاي نوري تضعيف شده از يک يا چندين ” تقويت‌کننده نوري “استفاده مي گردد. تقويت‌کننده نوري از فيبرهاي نوري متعدد بهمراه يک روکش خاص(doping)  تشکيل مي گردند. بخش دوپينگ با استفاده از يک ليزر پمپ مي گردد . زمانيکه سيگنال تضعيف شده به روکش دوپينگي مي رسد، انرژي ماحصل ازليزر باعث مي گردد که مولکول هاي دوپينگ شده، به ليزر تبديل مي گردند. مولکولهاي دوپينگ شده در ادامه باعث انعکاس يک سيگنال نوري جديد و قويتر با همان خصايص سيگنال ورودي تضعيف شده ، خواهند بود( تقويت کننده ليزري)

دريافت کننده نوري

وظيفه دريافت کننده ، مشابه نقش ملوان بر روي عرشه کشتي ناو دريافت کننده پيام است. دستگاه فوق سيگنال هاي ديجيتالي نوري را اخذ و پس از رمزگشائي ، سيگنالهاي الکتريکي را براي ساير استفاده کنندگان کامپيوتر ، تلفن و … ارسال مي نمايد. دريافت کننده بمنظور تشخيص نور از يک”فتوسل” و يا “فتوديود”  استفاده مي کند.

3-4-3- مزاياي فيبر نوري

فيبر نوري در مقايسه با سيم هاي هاي مسي داراي مزاياي زير است:

* ارزانتر. هزينه چندين کيلومتر کابل نوري نسبت به سيم هاي مسي کمتر است.

* نازک‌تر.  قطر فيبرهاي نوري بمراتب کمتر از سيم هاي مسي است.

* ظرفيت بالا . پهناي باند فيبر نوري بمنظور ارسال اطلاعات بمراتب بيشتر از سيم مسي است.

* تضعيف ناچيز. تضعيف سيگنال در فيبر نوري بمراتب کمتر از سيم مسي است.

* سيگنال هاي نوري . برخلاف سيگنال هاي الکتريکي در يک سيم مسي ، سيگنا ل ها ي نوري در يک فيبر تاثيري بر فيبر ديگر نخواهند داشت.

* مصرف برق پايين . با توجه به سيگنال ها در فيبر نوري کمتر ضعيف مي گردند، بنابراين مي توان از فرستنده هائي با ميزان برق مصرفي پايين نسبت به فرستنده هاي الکتريکي که از ولتاژ بالائي استفاده مي‌نمايند، استفاده کرد.

* سيگنال هاي ديجيتال . فيبر نوري مناسب بمنظور انتقال اطلاعات ديجيتالي است.

* غير اشتعال زا . با توجه به عدم وجود الکتريسيته، امکان بروز آتش سوزي وجود نخواهد داشت.

* سبک وزن . وزن يک کابل فيبر نوري بمراتب کمتر از کابل مسي (قابل مقايسه) است.

* انعطاف پذير . با توجه به انعظاف پذيري فيبر نوري و قابليت ارسال و دريافت نور از آنان، در موارد متفاوت نظير دوربين هاي ديجيتال با موارد کاربردي خاص مانند : عکس برداري پزشکي، لوله کشي و استفاده مي گردد.

با توجه به مزاياي فراوان فيبر نوري، امروزه از اين نوع کابل ها در موارد متفاوتي استفاده مي شود. اکثر شبکه هاي کامپيوتري و يا مخابرات ازراه دور در مقياس وسيعي ازفيبر نوري استفاده مي نمايند.

5-3- نحوه عملکرد خطوط  T 1

اکثر شما با يک خط مخابراتي معمولي آشنا هستيد. در اين نوع خطوط از يک زوج سيم مسي که مسئوليت انتقال صوت را به صورت سيگنال هاي آنالوگ برعهده دارد،استفاده مي گردد. زماني که اين نوع خطوط را به يک مودم معمولي متصل مي نمائيم،امکان انتقال داده تا ٣٠ کيلو بيت در ثانيه فراهم مي گردد.

با توجه به تحولات گسترده در عرصه مخابراتي، اکثر شرکت هاي مخابراتي درصددانتقال تمامي ترافيک صوتي خود به صورت ديجيتال در مقابل آنالوگ مي باشند. در اين رابطه مي بايست خط آنالوگ شما به يک سيگنال ديجيتال تبديل گردد. بدين منظور درهر ثانيه ٨٠٠٠ الگو و با دقت هشت بيت، نمونه برداري مي گردد (٦٤،٠٠٠ بيت درثانيه). در حال حاضر به منظور انتقال داده هاي ديجيتال عموماً از فيبرنوري استفاده مي گردد. در اين رابطه شرکت هاي مخابراتي از گزينه هاي متفاوتي در خصوص ظرفيت هر خط فيبر نوري، استفاده مي نمايند. در صورتي که محل کار شما از يک خط T1 استفاده مي نمايد، نشاندهنده اين موضوع است که شرکت مخابرات و ساير شرکت هاي عرضه کننده سرويس فوق، يک خط فيبرنوري را تا محل اداره شما آماده نموده اند.(يک خط  T1 ممکن است به صورت مسي نيز ارائه گردد). يک خط  T1 قادر به حمل ٢٤ کانال صوتي ديجيتال و يا انتقال داده با ميزان 544/1 مگابيت در هر ثانيه است.

در صورتي که خط  T1به منظور مبادلات تلفني استفاده مي گردد، خط فوق به سيستم تلفن اداره شما متصل مي گردد. در صورتي که از خط  T 1 به منظور انتقال داده استفاده مي گردد، خط فوق به روتر شبکه متصل مي گردد.

يک خط T1 قادر به حمل حدود ١٩٢،٠٠٠ بايت در هر ثانيه است (٦٠ مرتبه بيش از يک مودم معمولي). ضريب اعتماد به اينگونه خطوط در مقايسه با يک مودم آنالوگ بمراتب بيشتر است. يک خط T1 مي تواند به صورت مشترک توسط کاربران متعددي استفاده شود (با توجه به نوع استفاده کاربران). مثلا” در صورت استفاده معمولي از اينترنت، صدها کاربر قادر به استفاده مشترک از يک خط T1  مي باشند. در صورتي که تمامي کاربران فايل هاي 3  MP را Download نموده و يا فايل هاي ويدئوئي را بطور را همزمان مشاهده نمايند، ظرفيت و پهناي باند موجود جوابگو نخواهد بود، گرچه احتمال تحقق چنين شرايطي در يک مقطع زماني خاص و بطور همزمان، کم مي باشد.

يک شرکت بزرگ به چيزي بيش از يک خط T1 نياز خواهد داشت. جدول زير برخي از گزينه هاي متداول را نشان مي دهد:

معادل نوع خط
٦٤ کيلوبيت در هر ثانيه DS 0
معادل دو خط  DS 0 به اضافه سيگنالينگ (16 کيلوبيت در هر ثانيه) و يا ١٢٨ کيلو بيت در ثانيه ISDN

 

1544 مگابيت در هر ثانيه(معادل خط DS 0) T1
232/43 مگابيت در هر ثانيه (معادل28 خط  T1) T3
١٥٥ مگابيت در هر ثانيه(معادل 84 خط T1) OC3
٦٢٢ مگابيت در هر ثانيه(معادل 4 خط OC 3) OC12
5/2 گيگابيت در هر ثانيه(معادل 4 خط OC 12) OC48
6/9 گيگابيت در هر ثانيه(معادل 4 خط OC48) OC192

جدول 1-3 – نیازمندیهای یک شرکت بزرگ

6-3-  فوايد تکنولوژی wireless

تکنولوژی wireless به کابر امکان استفاده از دستگاه های متفاوت ، بدون نياز به سيم يا کابل ، در حال حرکت را می دهد.شما می توانيد صنوق پست الکترونيکی خود را بررسی کنيد، بازار بورس را زير نظر بگيريد، اجناس مورد نياز را خريداری کنيد و يا حتی برنامه تلويزيون مورد علاقه خود را تماشا کنيد.بسياری از زمينه های کاری از جمله مراقبت های پزشکی، اجرا قوانين و سرويس های خدماتی احتياج به تجهيزاتWireless دارند . تجهيزات Wireless به شما کمک می کند تا تمام اطلاعات را به راحتی برای مشتری خود به نمايش در بياوريد.از طرفی می توانيد تمامی کارهای خود را در حال حرکت به سادگی به روز رسانی کنيد و آن را به اطلاع همکاران خود برسانيد.تکنولوژی Wireless در حال گسترش است تا بتواند ضمن کاهش هزينه ها، به شما امکان کار در هنگام حرکت را نيز بدهد.در مقايسه با شبکه های بی  سيمی ، هزينه نگهداری شبکه های  Wireless کمترمی باشد . شما می توانيد از شبکه های Wireless  برای انتقال اطلاعات از روی درياها، کوهها و … استفاده کنيد و اين در حالی است که برای انجام کار مشابه توسط شبکه های سيمی، کاری مشکل در پيش خواهيد داشت .

7-3- سیستم های wireless

سيستم Wireless  می توانند به سه دسته اصلی تقسيم شوند :

– سيستم های Wireless ثابت : از امواج راديويی استفاده می کند و خط ديد مستقيم برای برقراری ارتباط لازم دارد. بر خلاف تلفن های همراه و يا ديگر دستگاههای  Wirelessاين سيستم ها از آنتن های ثابت استفاده می کنند و به طور کلی میتوانند جانشين مناسبی برای شبکه های کابلی باشند و می توانند برای ارتباطات پرسرعت اينترنت و يا تلويزيون مورد استفاده قرار گيرند.امواج راديويی وجود دارند که می توانند اطلاعات بيشتری را انتقال دهند و در نتيجه از هزينه ها می کاهند .

-سيستم  Wireless قابل حمل : دستگاهی است که معمولا خارج از خانه، دفتر کار و يا در وسايل نقليه مورد استفاده قرار می گيرند.نمونه های اين سيستم عبارتند از تلفن های همراه، نوت بوکها، دستگاه های پيغام گير و PDA ها. اين سيستم از مايکروويو و امواج راديويی جهت انتقال اطلاعات استفاده می کند .

سیستمWireless  مادون قرمز : اين سيستم از امواج مادون قرمز جهت انتقال سيگنالهايی محدود بهره می برد.اين سيستم معمولا در دستگاه های کنترل از راه دور، تشخيص دهنده های حرکت، و دستگاه های بي سيم کامپيوترهای شخصی استفاده می شود.با پيشرفت حاصل در سالهای اخير، اين سيستم ها امکان اتصال کامپيوتر های نوت بوک و کامپيوتر های معمول به هم را نيز می دهند و شما به راحتی می توانيد توسط اين نوع از سيستم های Wireless شبکه های داخلی راه اندازی کنيد .

8-3- آینده wireless

نسل سوم شبکه ها، G3، نسل آينده شبکه های Wireless  نامگذاری شده است. سيستم های G3 کمک می کنند تا صدا و تصوير و داده را با کيفيت مناسب و به سرعت انتقال دهيم. پيش بينی  IDC برای کاربردی شدن G3 سال 2004 می باشد و تا آن موقع در حدود 29 ميليون کاربر (m –commerce, mobile commerce) در آمریکا وجود خواهند داشت . از طرفی IBM معتقد است که بازار کلی تجهيزات Wireless در سال 2003 به رقمی بالغ بر 83 بيليون دلار خواهد رسيد.

معماری شبکه های محلی بی سيم

استاندارد 802.11 b به تجهيزات اجازه میدهد که به دو روش ارتباط در شبکه برقرار شود. این دو روش عبار تند از برقرار ی ارتباط به صورت نقطه به نقطه –همان گونه در شبکه های Ad hoc به کار می رود- و اتصال به شبکه از طریق نقاط تماس یا دسترسی (AP=Access Point) .

معماری معمول در شبکه های محلی بی سيم بر مبنای استفاده از AP است. با نصب یک AP عملاً مرزهای یک سلول مشخص میشود و با روشهایی می توان یک ، سخت افزار مجهز به امکان ارتباط بر اساس استاندارد 802.11 bرا ميان سلول های مختلف حرکت داد. گستره ای که یک AP پوشش می دهد را BSS (Basic Service Set) می نامند.

مجموعه ی تمامی سلول های یک ساختار کلی شبکه، که ترکيبی از BSSهای شبکه است، را  ESS(Extended Service Set) می نامند. با استفاده از ESS می توان گستره ی وسيع تری را تحت پوشش شبکه ی محلی بی سيم درآورد.

در سمت هریک از سخت افزارها که معمولاً مخدوم هستند، کارت شبکه یی مجهز به یک مودم بی سيم قرار دارد که با APارتباط را برقرار میکند AP علاوه بر ارتباط با چند کارت شبکه ی بی سيم، به بستر پرسرعتتر شبکه ی سيمی مجموعه نيز متصل است واز این طریق ارتباط ميان مخدوم های مجهز به کارت شبکه ی بی سيم و شبکه ی اصلی برقرار می شود .

Byadmin

آشنایی با شبکه های Wireless

آشنایی با شبکه های Wireless

Wireless به تکنولوژي ارتباطي اطلاق مي شود که در آن از امواج راديويي، مادون قرمز و مايکروويو ، به جاي سيم و کابل ، براي انتقال سيگنال بين دو دستگاه استفاده مي شود.از ميان اين دستگاه ها مي توان پيغامگيرها، تلفن هاي همراه، کامپيوتر هاي قابل حمل، شبکه هاي کامپيوتري، دستگاه هاي مکان ياب، سيستم هاي ماهواره اي و PDA ها را نام برد.تکنولوژي Wireless به سرعت در حال پيشرفت است و نقش کليدي را در زندگي ما در سرتاسر دنيا ايفا مي کند.

1-2-  شبکه های بدون کابل

شبکه های بدون کابل یکی از چندین روش موجود به منظور اتصال چند کامپیوتر به یکدیگر و ایجاد یک شبکه کامپیوتری است . در شبکه های فوق برای ارسال اطلاعات بین کامپیوترهای موجود در شبکه از امواج رادیویی استفاده می شود .

1-1-2-  مباني شبکه هاي بدون کابل

تکنولوژي شبکه هاي بدون کابل از ايده” ضرورتي به کابل ها ي جديدنمي باشد”، استفاده مي نمايند. در اين نوع شبکه ها، تمام کامپيوترها با استفاده از سيگنال هائي راديوئي اقدام به انتشار اطلاعات مورد نظر براي يکديگر مي نمايند. اين نوع شبکه ها داراي ساختاري ساده بوده و براحتي مي توان يک کامپيوتر متصل به اين نوع ازشبکه ها را مکان هاي ديگر استقرار و کماکن از امکانات شبکه بهره مند گرديد مثلا” درصورتي که اين نوع شبکه ها را در يک فضاي کوچک نظير يک ساختمان اداري ايجاد کرده باشيم و داراي يک کامپيوتر laptopباشيم که از کارت شبکه مخصوص بدون کابل استفاده مي نمايد، در هر مکاني از اداره مورد نظر که مستقر شده باشيم با استفاده از Laptopمي توان بسادگي به شبکه متصل و از امکانات مربوطه استفاده کرد.

شبکه هاي کامپيوتري از نقظه نظر نوع خدمات وسرويس دهي به دو گروه: نظير به نظيرو سرويس گيرنده / سرويس دهنده نقسيم مي گردند. در شبکه هاي نظير به نظير هرکامپيوتر قادر به ايفاي وظيفه در دو نقش سرويس گيرنده و سرويس دهنده در هرلحظه است. در شبکه هاي سرويس گيرنده / سرويس دهنده، هر کامپيوتر صرفا” مي تواند يک نقش را بازي نمايد.) سرويس دهنده يا سرويس گيرنده )در شبکه هاي بدون کابل که بصورت نظير به نظير پياده‌سازي مي گردنند، هر کامپيوتر قادر به ارتباط مستقيم با هر يک از کامپيوترهاي موجود در شبکه است. برخي ديگر از شبکه هاي بدون کابل بصورت سرويس گيرنده / سرويس دهنده، پياده سازي مي گردند. اين نوع شبکه ها داراي يک Access pointمي باشند.

دستگاه فوق يک کنترل کننده کابلي بوده و قادر به دريافت و ارسال اطلاعات به آداپتورهاي بدون کابل (کارت هاي شبکه بدون کابل) نصب شده در هر يک ازکامپيوترها مي باشند.

2-2- انواع شبکه های بی سیم :

چهار نوع متفاوت از شبکه هاي بدون کابل وجود دارد (از کند و ارزان تا سريع وگران )

BlueTooth *

IrDA *

SWAP) *  HomeRF)

(Wi-Fi  WECA) *

شبکه‌هاي Bluetooth  در حال حاضر عموميت نداشته و بنظر قادر به پاسخگوئي به کاربران براي شبکه ها ي با سرعت بالا نمي باشند. IrDA(Infrared Data Association) استانداردي به منظور ارتباط دستگاههائي است که از سيگنال ها ي نوري مادون قرمز استفاده مي نمايند. استاندارد فوق نحوه عمليات کنترل از راه دور،( توليد شده توسط يک توليد کننده خاص) و يک دستگاه راه دور (توليد شده توسط توليد کننده ديگر) را تبين مي کند. دستگاههاي IrDA از نورمادون قرمز استفاده مي نمايند.

قبل از بررسي مدل هاي Wi-Fi و SWAP لازم است که در ابتدا با استاندارد اوليه اي که دو مد ل فوق بر اساس آنها ارائه شده اند ، بيشتر آشنا شويم. اولين مشخصات شبکه هاي اترنت بدو ن کابل با نام IEEE 802.11 توسط موسسه IEEEعرضه گرديد. در استاندارد فوق دو روش به منظور ارتباط بين دستگاهها با سرعت دو مگابيت در ثانيهمطرح شد. دو روش فوق بشرح زير مي باشند:

(Direct-sequence spread spectrum )DSSS *

(Frequency-hopping spread spectrum )FHSS *

دو روش فوق از تکنولوژي  FSK(Frequency-shift keying) استفاده مي نمايند. همچنين دو روش فوق از امواج راديوئي  Spread-spectrum در محدوده4 / 2 گيگاهرتز استفاده مي نمايند.

Spread Spectrum بدين معني است که داده مورد نظر براي ارسال به بخش هاي ، کوچکتر تقسيم و هر يک از آنها با استفاده از فرکانس هاي گسسته قابل دستيابي در هر زمان ، ارسال خواهند شد. دستگاههائي که از DSSSاستفاده مي نمايند، هر بايت داده را به چندين بخش مجزا تقسيم و آنها را بصورت همزمان با استفاده از فرکانس هاي متفاوت، ارسال مي دارند.

DSSSاز پهناي باند بسيار بالائي استفاده مي نمايد( تقريبا” ٢٢ مگاهرتز) دستگاههائي که از FHSSاستفاده مي نمايند، دريک زمان پيوسته کوتاه ، اقدام به ارسال داده کرده و با شيفت دادن فرکانس (hop) بخش ديگري از اطلاعات را ارسال مي نمايند. با توجه به اينکه هر يک از دستگاههاي FHSSکه با يکديگر مرتبط مي گردند، بر اساس فرکانس مربوطه اي که مي بايست  Hopنمايند و از هر فرکانس در يک بازه زماني بسيار کوتاه استفاده مي نمايند(حدودا ٤٠٠ ميلي ثانيه)، بنابراين مي توان از چندين شبکه FHSS در يک محيط استفاده کرد(بدون اثرات جانبي). دستگاه‌هاي  FHSS صرفاً داراي پهناي باند يک مگاهرتز و يا کمتر مي باشند.

*SWAP و  HomeRF

HomeRF ، اتحاديه اي است که استانداري با نامSWAP (Shared Wireless Access protocol) را ايجاد نموده است . داراي شش کانال صوتي متفاوت بر اساس استاندارد DECT  و 11,802 است .دستگاه‌هاي SWAP در هر ثانيه hop 50 ايجاد و در هر ثانيه قادر به ارسال يک مگابيت در ثانيه   مي باشند. در برخي از مدل ها ميزان ارسال اطلاعات تا دو مگابيت در ثانيه هم  مي رسد.  توانائي فوق ارتباط مستقيم به تعداد اينترفيس هاي موجود در مجيط عملياتي دارد. مزاياي SWAPعبارتند از:

* قيمت مناسب

* نصب آسان

* به کابل هاي اضافه نياز نخواهد بود

* داراي Access point نيست

* داراي شش کانال صوتي دو طرفه و يک کانال داده است

* امکان استفاده از ١٢٧ دستگاه در هر شبکه وجود دارد.

*امکان داشتن چندين شبکه در يک محل را فراهم مي نمايد.

*امکان رمزنگاري اطلاعات به منظور ايمن سازي داده ها وجود دارد.

برخي از اشکالات  SWAP عبارتند از:

* داراي سرعت بالا نيست (در حالت عادي يک مگابيت در ثانيه)

*داراي دامنه محدودي است ( ٧٥ تا ١٢٥ فوت / ٢٣ تا ٣٨ متر)

* با دستگاههاي FHSS سازگار نيست.

*دستگاههاي داراي فلز و يا وجود ديوار مي تواند باعث افت ارتباطات شود.

* استفاده در شبکه هاي کابلي مشکل است.

تراتسيور بدون کابل واقعي بهمراه يک آنتن کوچک در يک کارت  PCI , ISA و يا PCMCIA ايجاد       ( ساخته ) مي گردد.  در صورتي که از يک کامپيوتر Laptopاستفاده مي شود، کارت PCMCIA بصورت مستقيم به يکي از اسلات هاي PCMCIAمتصل خواهد شد. در کامپيوترهاي شخصي، مي بايست از يک کارت اختصاصي ISA ،کارت HomeRF PCI و يا يک کارت PCMCIAبه همراه يک آداپتور مخصوص، استفاده کرد. با توجه به ضرورت استفاده از کارت هاي اختصاصي، صرفا” کامپيوترها را مي توان در يک شبکه SWAPاستفاده کرد. چاپگرها و ساير وسائل جانبي مي بايست مستقيما” به يک کامپيوتر متصل و توسط کامپيوتر مورد نظر به عنوان يک منبع اشتراکي مورداستفاده قرار گيرند.

اکثر شبکه هاي SWAP بصورت “نظير به نظير” مي باشند. برخي از توليدکنندگان اخيرا” به منظور افزايش دامنه تاثير پذيري در شبکه هاي بدون کابل     Access pointهائي را به بازار عرضه نموده اند. شبکه هاي HomeRfنسبت به ساير شبکه هاي بدون کابل، داراي قيمت مناسب تري مي باشند.

* WECA و Wi-Fi

WECA (Alliance Compatibility Wireless Ethernet) رويکرد جديدي را نسبت به HomeRF ارائه نموده است . Wi-Fi، استانداردي است که به تمام توليدکنندگان براي توليد محصولات مبتي بر استاندارد IEEE11,802تاکيد مي نمايد. مشخصات فوق FHSS را حذف و تاکيد بر استفاده از DSSS دارد . ( بدليل ظرفيت بالا در نرخ انتقال اطلاعات) بر اساس IEEE 802.11b ، هر دستگاه قادر به برقراري ارتباط با سرعت يازده مگابيت در ثانيه است. در صورتي که سرعت فوق پاسخگو نباشد بتدريج سرعت به5/5 مگابيت در ثانيه ، دو مگابيت در ثانيه و نهايتا” به يک مگابيت در ثانيه تنزل پيدا خواهد کرد. بدين ترتيب شبکه از صلابت و اعتماد بيشتري برخوردارخواهد بود.

مزاياي Wi-Fiعبارتند از :

* سرعت بالا (يازده مگابيت در ثانيه)

* قابل اعتماد

* داراي دامنه بالائي مي باشند ( 000,1 فوت يا ٣٠٥ متر در قضاي باز و ٢٥٠ تا ٤٠٠ فوت / ٧٦ تا ١٢٢ متر در فضاي بسته)

* با شبکه هاي کابلي بسادگي ترکيب مي گردد.

* با دستگاههاي DSSS 802.11 (اوليه ) سازگار است.

برخي از اشکالات  Wi-Fiعبارتند از:

* گران قيمت مي باشند.

* پيکربندي و تنظيمات آن مشکل است.

* نوسانات سرعت زياد است.

Wi-Fi سرعت شبکه هاي اترنت را بدون استفاده از کابل در اختيار قرار مي دهد. کارت هاي سازگار با  Wi-Fi به منظور استفاده در شبکه هاي ” نظير به نظير ” وجود دارد، ولي معمولا Wi-Fi به Access point  نياز خواهد داشت. اغلب Access Point داراي يک اينترفيس به منظور اتصال به يک شبکه کابلي اترنت نيز مي باشند. اکثر ترانسيورهاي  Wi-Fi بصورت کارت هاي PCMCIA عرضه شده اند. برخي از توليدکنندگان کارت هايPCI  و يا ISA را نيز عرضه نموده اند.

با گسترش شهرها و بوجود آمدن فاصله هاي جغرافيايي بين مراكز سازمان ها و شركت ها و عدم رشد امكانات مخابراتي با رشد نياز ارتباطي داخل كشور ، يافتن راه حل و جايگزين مناسب جهت پياده سازي اين ارتباط شديدا احساس مي شود كه در اين زمينه سيستم هاي مبتني بر تكنولوژي بي سيم انتخاب مناسبي مي باشد .

 

3-2- تقسیم بندی شبکه های بی سیم از لحاظ بعد جغرافیایی :

با گسترش شهرها و بوجود آمدن فاصله هاي جغرافيايي بين مراكز سازمان ها و شركت ها و عدم رشد امكانات مخابراتي با رشد نياز ارتباطي داخل كشور ، يافتن راه حل و جايگزين مناسب جهت پياده سازي اين ارتباط شديدا احساس مي شود كه در اين زمينه سيستم هاي مبتني بر تكنولوژي بي سيم انتخاب مناسبي مي باشد.
PAN يا Personal Arean Network  :

سيستم هاي بي سيم كه داراي برد و قدرت انتقال پايين هستند را شامل مي شود كه اين ارتباط غالبا بين افراد برقرار مي شود. نمونه اين تكنولوژي در سيستم ها Infrared براي ارتباط نقطه به نقطه دو شخص و يا Bluethooth براي ارتباط يك نقطه به چند نقطه جهت ارتباط يك شخص به چند شخص مي باشد. استاندارد مورد استفاده در اين محدوده كاربرد IEEE 802.15 مي باشد.

LAN يا Local Area Netwok  :

در اين دسته بندي سيستم هاي بي سيم از استاندارد IEEE 802.11 استفاده مي كنند. اين محدوده كاربري معادل محدوده شبكه هاي LAN باسيم بوده كه برپايه تكنولوي بي سيم ايجاد شده است.

MAN يا Metropolitan Area Netwok  :

سيستم هاي بي سيم از استاندارد IEEE 802.16 استفاده مي كنند. محدوده پوشش فراتر از محدوده LAN بوده و قالبا چندين LAN را شامل مي شود. سيستم هاي WIMAX اوليه مبتني بر اين استاندارد هستند.

 

WAN يا Wide Area Netwok  :

سيستم هاي بي سيم مبتني بر استاندارد IEEE 802.16e هستند كه به IEEE 802.20 نيز شهرت يافته اند. سيستم هاي WIMAX در ابعاد كلان و بدون محدوديت حركتي در اين محدوده كار مي كنند.

4-2-  شبکه های موردی بی سیم (Wireless Ad Hoc Networks)

یک شبکه موردی بی‌سیم یک شبکه بی‌سیم غیر‌متمرکز است. این شبکه شامل مجموعه‌ای از گره‌ های توزیع‌شده است که بدون هیچ زیر‌ساخت یا مدیریت مرکزی، یک شبکه موقت را تشکیل می‌دهند. در این شبکه‌ها، هیچ زیرساختی مثل مسیریاب یا نقطه دسترسی وجود ندارد، بلکه گره‌ها به طور مستقیم با هم ارتباط برقرار می‌کنند و هر گره از طریق ارسال داده‌ها برای سایر گره‌ها در مسیریابی شرکت می‌کند. در شبکه‌های موردی، گره‌ها می‌توانند هم به عنوان مسیریاب و هم به عنوان میزبان عمل کنند. شبکه موردی به دستگاه‌ها این امکان را می دهد که در هر زمان و در هر مکان بدون نیاز به یک زیر‌ساخت مرکزی با یکدیگر ارتباط برقرار کنند.

اولین شبکه‌های موردی بی‌سیم، شبکه‌های رادیویی بسته (PRNETS) بودند که توسط سازمان DARPA در دهه 1970 ایجاد شدند. شبکه‌های موردی به دلایل نظامی به وجود آمدند اما امروزه در صنعت و بسیاری از مقاصد غیر‌نظامی استفاده می‌شوند.

به دلیل تحرک گره‌ها، توپولوژی شبکه پویا و متغیر می‌باشد. بنابراین، با توجه به این که گره‌ها می توانند به طور پیوسته موقعیت خود را تغییر دهند، به یک پروتکل مسیریابی که توانایی سازگاری با این تغییرات را داشته باشد، نیاز دارد. در یک شبکه موردی، گره‌ها از طریق لینک‌های بی‌سیم به هم متصل شده‌اند. از آنجایی که لینک‌ها می‌توانند در هر زمان متصل یا منفصل شوند، یک شبکه باید قادر باشد خود را با ساختار جدید تطبیق دهد. یک مسیر دنباله‌ای از لینک‌ها است که دو گره را به هم متصل می‌کند.

برخلاف شبکه‌های زیر‌ساخت، در شبکه‌های موردی، مسیریابی به صورت چند‌گامی است. در شبکه‌های زیرساخت، کاربر تنها در یک گام با ایستگاه مرکزی ارتباط برقرار می‌کند و ایستگاه مرکزی، پیام مربوطه را به کاربر دیگر می‌رساند. اما در شبکه‌های موردی، یک کاربر از طریق چند گام با کاربر دیگر ارتباط برقرار می‌کند. گام‌ها گره‌های میانی هستند که وظیفه‌شان تقویت و ارسال پیام‌ها از مبدا به مقصد است. گره‌هایی که در حوزه ارتباطی یکدیگر قرار دارند، مستقیما از طریق لینک‌های بی سیم با هم ارتباط برقرار می کنند و گره‌هایی که از هم دورند، پیامشان از طریق گره‌های میانی تقویت و ارسال می شود تا به گره مقصد برسد.

این شبکه‌ها قادر به خود‌پیکربندی هستند. به طوری که اگر یکی از گره‌های میانی با مشکل مواجه شود، شبکه به طور خودکار مجددا خود را پیکربندی کرده و یک مسیر جایگزین را از مبدا به مقصد تعیین می‌کند. به منظور پیکربندی شبکه، ابتدا هر گره، گره‌هایی که برای ارتباط در دسترس هستند را شناسایی می‌کند. سپس هر گره اطلاعات بدست آمده را به همراه مقصد مورد نظر، برای سایر گره‌ها ارسال می کند. الگوریتم پیکربندی شبکه با استفاده از لیستی از اتصالات موجود، یک مسیریابی منحصر‌بفرد را برای ارتباط هر کاربر با مقصدش بر می‌گزیند. با گذشت زمان، شبکه تغییر می‌کند. کاربران ممکن است بیایند و بروند، گره‌ها ممکن است جابجا شوند یا تغییر در محیط الکترومغناطیس ممکن است انتشار بین گره‌ها را دچار تغییر کند. هنگامی که این تغییرات رخ می‌دهند، شبکه پیکربندی خود را به‌روز رسانی می‌کند و مسیرهای جدیدی را از کاربران به مقاصدشان شناسایی می‌کند. این پیکربندی مجدد، در طی تغییرات شبکه بارها و بارها تکرار می شود. به این ترتیب شبکه‌های موردی قادر به خود‌ترمیمی می باشند که این قابلیت از طریق خود‌پیکربندی مداوم شبکه فراهم می‌شود.

مزایای اصلی یک شبکه موردی شامل موارد زیر است:

  1. خود‌مختار است. (مستقل از مدیریت مرکزی شبکه است و به زیر‌ساخت نیاز ندارد.)
  2. سرعت توسعه آن زیاد است.
  3. مقرون به صرفه است. (به سادگی و با صرف هزینه پایین قابل پیاده‌سازی است.)
  4. قادر به خود‌پیکربندی است.
  5. قادر به خود‌ترمیمی است.
  6. مقیاس‌پذیر است. (خود را با اضافه شدن گره‌های بیشتر تطبیق می‌دهد.)
  7. انعطاف‌پذیر است. (به عنوان مثال، دسترسی به اینترنت از نقاط مختلف موجود در محدوده تحت پوشش شبکه امکان پذیر است.)

بعضی از محدودیت‌های شبکه‌ موردی به شرح زیر است:

  1. هر گره باید دارای کارایی کامل باشد.
  2. به دلیل استفاده از لینک‌های بی‌سیم، دارای پهنای باند محدود است.
  3. برای قابلیت‌اطمینان به تعداد کافی از گره‌های در دسترس نیاز دارد. در نتیجه شبکه‌های پراکنده می‌توانند مشکلاتی را به همراه داشته باشند.
  4. در شبکه‌های بزرگ ممکن است تاخیر زمانی زیادی داشته باشد.
  5. دارای انرژی محدود است. چون گره‌ها، انرژی خود را از باتری‌ها بدست می‌آورند.
  6. امنیت فیزیکی آن محدود است.

 

بعضی از چالش‌های امنیتی در شبکه‌های موردی شامل موارد زیر است:

  1. نبود زیر‌ساخت یا کنترل مرکزی، مدیریت شبکه را مشکل می‌کند.
  2. به دلیل توپولوژی پویای شبکه، نیازمند مسیریابی پیشرفته و امن است.
  3. با توجه به امکان عدم همکاری گره‌ها، مکانیزم‌های مسیریابی آسیب‌پذیر می‌باشند.
  4. از آنجایی که ارتباطات از طریق امواج رادیویی هستند، جلوگیری از استراق‌سمع مشکل است.

شبکه‌های موردی معمولا در مواقعی که نیاز به پیاده‌سازی سریع یک شبکه ارتباطی است و زیر‌ساختی در دسترس نبوده و ایجاد و احداث زیر‌ساخت نیز مقرون به صرفه نباشد، کاربرد دارند. از جمله این کاربرد‌ها می‌توان به موارد زیر اشاره کرد:

  1. کاربرد‌های نظامی در میدان جنگ
  2. امداد‌رسانی به حادثه‌دیدگان در بلایای طبیعی
  3. به اشتراک‌گذاری داده‌ها توسط شرکت‌کنندگان در یک کنفرانس

5-2-  انواع شبکه‌های موردی بی‌سیم عبارتند از:

  1. شبکه‌های موردی سیار (MANET)
  2. شبکه‌های حسگر بی‌سیم (WSN)
  3. شبکه‌های توری بی‌سیم (WMN)

یک شبکه موردی سیار (MANET)، یک شبکه بدون زیر‌ساخت و دارای قابلیت خود‌پیکربندی است که از دستگاه‌های متحرکی که از طریق لینک‌های بی‌سیم به هم متصل شده‌اند، تشکیل شده است. هر دستگاه موجود در یک MANET آزاد است که به طور مستقل در هر جهتی حرکت کند و در نتیجه لینک‌های آن به سایر دستگاه‌ها مکررا تغییر می کنند. دستگاه‌ها شامل مسیریاب‌ها و میزبان‌های متحرک می باشند که یک گراف دلخواه را تشکیل می‌دهند. شبکه‌های MANET ممکن است به صورت مستقل عمل کنند یا به شبکه دیگری مثل اینترنت متصل باشند.

شبکه موردی وسایل نقلیه (VANET)، نوعی MANET است که برای ارتباط میان وسایل نقلیه و همچنین ارتباط بین وسایل نقلیه و تجهیزات کنار جاده ای بکار می‌رود.

شبکه ی Mobile ad hoc (MANET) : MANET  مجموعه ای است از node های موبایل یا متحرک مجهز به گیرنده و فرستنده به منظور برقراری ارتباطات بی سیم Node ها ی موبایل به دلیل وجود محدودیت هایی در فرستنده و گیرنده های خود نمی توانند با تمام node ها ارتباط مستقیم برقرار کنند. به همین دلیل لازم است در مواردی که امکان برقراری چنین ارتباط مستقیمی وجود ندارد داده ها از طریق بقیه ی node ها که در این حالت نقش مسیر یاب را ایفا می کنند منتقل شوند.با این حال متحرک بودن node ها باعث شده شبکه مدام در حال تغییر بوده و مسیر های مختلفی بین دو node به وجود آید. عوامل دیگری همچون Multi hopping  اندازه ی بزرگ شبکه , و نا همگونی انواع host ها و تنوع نوع و ساختار آنها و محدودیت توان باتری ها طراحی پروتوکل های مسیر یابی مناسب را به یک مشکل جدی بدل کرده است.برای این منظور بایستی از پروتوکل های مناسب و امنی استفاده شود که در ادامه به آنها خواهیم پرداخت.

همچنین node ها هیچ دانش پیشینی نسبت به توپولوژی شبکه ای که در محدوده ی آنها بر قرار است ندارند و بایستی از طریقی پی به آن ببرند.روش رایج این است که یک node جدید بایستی حضور خود را اعلام کرده و به اطلاعات broad cast شده از همسایگان خود گوش فرا دهد تا بدین ترتیب اطلاعاتی در مورد node های اطراف و نحوه ی دسترسی به آنها به دست آورد.

دیگر مسائل , مشکلات و محدودیت های موجود در این شبکه ها

  1. خطاهای ناشی از انتقال و در نتیجه packet loss فراوان.
  2. حضور لینکهای با ظرفیت متغیر.
  3. قطع و وصل شدن های زیاد و مداوم
  4. پهنای باند محدود.
  5. طبیعت broad cast ارتباطات.
  6. مسیر ها و توپولوژی های متغیر و پویا
  7. طول کم شارژ باتری ابزار متحرک
  8. ظرفیت ها و قابلیت های محدود node ها.
  9. نیاز به application های جدید ( لایه ی Application )
  10. کنترل میزان تراکم و جریان داده ها ( لایه ی Transport )
  11. روش های آدرس دهی و مسیر یابی جدید( لایه ی Network )
  12. تغییر در وسایل و ابزار آلات اتصالی ( لایه ی Link )
  13. خطاهای انتقال ( لایه ی Physical )

6-2- پروتكل هاي رايج در شبكه هاي بي سيم :

802.11

1Mbps , 2.4 GHZ

802.11 a

5.8 GHZ Frequence

54 Mbps

802.11b
2.4 GHZ Frequence

11 Mbps

802.11g

2.4 MHZ Frequence

54 Mbps

802.11a+g
2.4 & 5.8 GHZ Frequence

54 Mbps

7-2- قوانين ومحدوديت ها :

به منظور در دسترس قرار گرفتن امكانات شبكه هاي بي سيم براي عموم مردم و همچنين عدم تداخل امواج شرايط محدود كننده اي براي افراد توسط كميته FCC تعيين شد كه مهمترين آن ها اين است كه تجهيزات شبكه هاي بي سيم در باند فركانسي 2.4 Ghz مجاز به داشتن حداكثر 10mw توان خروجي با زاويه پوشش آنتن 9 درجه هستند كه توان خروجي براي باند فركانسي 5.8 Ghz تا 200 mw مجاز اعلام شده است.

 

8-2- روش هاي ارتباطي بي سيم :

تجهيزات و شبكه هاي كامپيوتري بي سيم بر دو قسم Indoor يا درون سازماني و Outdoor يا برون سازماني توليد شده و مورد استفاده قرار مي گيرند.

شبكه هاي بي سيم Indoor :

نياز سازمان ها و شركت ها براي داشتن شبكه اي مطمئن و وجود محدوديت در كابل كشي ، متخصصين را تشويق به پيدا كردن جايگزين براي شبكه كامپيوتري كرده است. شبكه هاي Indoor به شبكه هايي اتلاق مي شود كه در داخل ساختمان ايجاد شده باشد. اين شبكه ها بر دو گونه طراحي مي شوند. شبكه هاي Ad hoc و شبكه هاي Infra Structure. در شبكه هاي Ad hoc دستگاه متمركز كننده مركزي وجود ندارد و كامپيوترهاي داراي كارت شبكه بي سيم هستند. استراتژي Ad hoc براي شبكه هاي كوچك با تعداد ايستگاه كاري محدود قابل استفاده است. روش و استراتژي دوم جهت پياده سازي استاندارد شبكه بي سيم ، شبكه Infra Structure مي باشد. در اين روش يك يا چند دستگاه متمركز كننده به نام Access Point مسؤوليت برقراري ارتباط را برعهده دارد.

شبكه هاي بي سيم Outdoor  :

برقراري ارتباط بي سيم در خارج ساختمان به شبكه بي سيم Outdoor شهرت دارد. در اين روش داشتن ديد مستقيم يا Line Of Sight ، ارتفاء دو نقطه و فاصله، معيارهايي براي انتخاب نوع Access Point و آنتن هستند.
انواع ارتباط :

شبكه بي سيم Outdoor با سه توپولوژي Point To Point ، Point To Multipoint و Mesh قابل پياده سازي مي باشد .

Point To point  :

در اين روش ارتباط دو نقطه مدنظر مي باشد. در هر يك از قسمت ها آنتن و AccessPoint نصب شده و ارتباط اين دو قسمت برقرار مي شود .

Point To Multi Poin  :

در اين روش يك نقطه به عنوان مركز شبكه درنظر گرفته مي شود و ساير نقاط به اين نقطه در ارتباط هستند. Mesh  :

ارتباط بي سيم چندين نقطه بصورت هاي مختلف را توپولوژي Mesh مي گويند. در اين روش ممكن است چندين نقطه مركزي وجود داشته باشد كه با يكديگر در ارتباط هستند.

ارتباط بي سيم بين دو نقطه به عوامل زير بستگي دارد :

  • توان خروجي Access Point ( ارسال اطلاعات
  • ( ميزان حساسيت Access Point(دريافت اطلاعات
  • توان آنتن

1-توان خروجي Access Point :

يكي از مشخصه هاي طراحي سيستم هاي ارتباطي بي سيم توان خروجي Access Point مي باشد. هرچقدر اين توان بيشتر باشد قدرت سيگنال هاي توايدي و برد آن افزايش مي يابد.

2-ميزان حساسيت Access Point :

از مشخصه هاي تعيين كننده در كيفيت دريافت امواج توليد شده توسط Access Point نقطه مقابل ميزان حساسيت Access Point مي باشد. هرچقدر اين حساسيت افزايش يابد احتمال عدم دريافت سيگنال كمتر مي باشد و آن تضمين كننده ارتباط مطمئن و مؤثر خواهد بود.

3-توان آنتن :

در مورد هر آنتن توان خروجي آنتن و زاويه پوشش يا انتشار مشخصه هاي حائز اهميت مي باشند در اين راستا آنتن هاي مختلفي با مشخصه هاي مختلف توان و زاويه انتشار بوجود آمده است كه آنتن هاي Omni ، Sectoral ، Parabolic ، Panel ، Solied و . . . . مثال هايي از آن هستند.

 

Byadmin

مقدمه ای بر شبکه های بی سیم و کابلی

مقدمه ای بر شبکه های بی سیم و کابلی

هسته اصلی سیستم های توزیع اطلاعات را  تشکیل می دهند. مفهوم شبکه های کامپیوتری بر پایه اتصال کامپیوتر ها و دیگر تجهیزات سخت افزاری به یکدیگر برای ایجاد امکان ارتباط و تبادل اطلاعات استوار شده است. گروهی از کامپیوتر ها و دیگر تجهیزات متصل به هم را یک شبکه می نامند. کامپیوتر هایی که در یک شبکه واقع هستند، میتوانند اطلاعات، پیاشبکه های کامپیوتریم، نرم افزار و سخت افزارها را بین یکدیگر به اشتراک بگذارند. به اشتراک گذاشتن اطلاعات، پیام ها و نرم افزارها، تقریباً برای همه قابل تصور است در این فرایند نسخه ها یا کپی اطلاعات نرم افزاری از یک کامپیوتر به کامپیوتر دیگر منتقل می شود. هنگامی که از به اشتراک گذاشتن سخت افزار سخن می گوییم به معنی آن است که تجهیزاتی نظیر چاپگر یا دستگاه مودم را می توان به یک کامپیوتر متصل کرد و از کامپیوتر دیگر واقع در همان شبکه، از آن ها استفاده نمود.

 

-1- شبکه های کابلی

LANیا همان شبکه محلی، در توصیف مجموعه ای رایانه هایی به کار می رود که توسط یک یا چند ابزار رسانه ای و ارتباطی به یکدیگر متصل شده و منابعی را برای استفاده درون شبکه ای به اشتراک گذاشته اند. قبل از ظهور رایانه های شخصی، این ارتباط ممکن بود بین دو یا چند رایانه مرکزی وجود داشته باشد که با سرعت پائین فعالیت می کردند. با ظهور رایانه های شخصی و گسترش روز افزون سیستم عامل هایی که کاربرد گسترده تری در بین کاربران پیدا می کردند، زمینه های رشد شبکه های محلی فراهم شد. در ابتدا این ارتباط جهت به اشتراک گذاری فضای هارد و یا چاپگرها بود، ولی طولی نکشید که ایده توسعه شبکه های به گونه ای گشت که کارشناسان در همان ایام، دوره بعدی را دوره شبکه های محلی نام گذاری کردند.

در میان مزایایی که برای شبکه های محلی از آن نام برده شده است می توان به موارد زیر اشاره کرد:

قابلیت به اشتراک گزاری فضای هارد

قابلیت به اشتراک گزاری انواع دستگاه های کاربردی شامل چاپگر، دورنگار، اسکنر و …

قابلیت بهره گیری از سیستم های نرم افزاری یکپارچه اتوماسیون اداری

صرفه جویی در زمان کاربران نسبت به شیوه استفاده انفرادی

امروزه این کاربرد فراتر از موارد ذکر شده رفته و در بسیاری جنبه های فناوری اطلاعات جای خود را باز کرده است.

یکی از اصلی ترین مفاهیم مطرح در شبکه های محلی، رسانه های ارتباطی می باشد. این رسانه ها شامل موارد زیر می باشند:

کابل های کواکسیال

کابل های زوج به هم تابیدهTwisted pair

فیبر نوری

امواج بی سیم

در این میان کابل های زوج به هم تابیده که در انواع مختلف در بازار عرضه می شوند، بیشترین گستردگی و استفاده را در استقرار و پیاده سازی شبکه های محلی دارند. بهای تمام شده پائین، پشتیبانی از سرعت بالا، بهره داشتن از امنیت بیشتر، و عمر بالای تجهیزات از جمله مزایایی است که در استفاده از این رسانه می توان به آن اشاره کرد. مهمترین استانداردهای پیاده سازی که در این زمینه عرضه شده است، مبتنی بر روش های کابل کشی ساخت یافته (Structured Cabling) است. در این استانداردها، کلیه پارامترهای لازم جهت استقرار شبکه های بهینه و قابل اطمینان مطرح شده است.

نیاز شما برای استقرار چه پهنای باند و یا چه میزان امنیت می باشد فرقی نمی کند، بهترین روش برای پاسخگویی به آن توسط کارشناسان ما طراحی و عرضه خواهد شد. کلیه روش ها مبتنی بر اصول کابل کشی ساخت یافته خواهد بود، به گونه ای که شبکه ای کارا و مطمئن عرضه نماید.

رسانه های انتقال داده در شبکه های کامپيوتری

امروزه از رسانه های متفاوتی به عنوان محيط انتقال در شبکه های کامپيوتری استفاده می شود که از آنان با نام ستون فقرات در يک شبکه ياد می شود . کابل های مسی، فيبرنوری و شبکه های بدون کابل نمونه هائی متداول در اين زمينه می باشند.

  • کابل های مسی : از کابل های مسی تقريبا” در اکثر شبکه های محلی استفاده می گردد . اين نوع کابل ها دارای انواع متفاوتی بوده که هر يک دارای مزايا و محدوديت های مختص به خود می باشند . انتخاب مناسب کابل، يکی از پارامترهای اساسی در زمان پياده سازی يک شبکه کامپيوتری است که بر نحوه عملکرد يک شبکه تاثير مستقيم خواهد داشت . اطلاعات در کابل های مسی با استفاده از جريان الکتريکی حمل می گردد .
  • فيبر نوری : فيبر نوری يکی از رسانه های متداول انتقال داده با ويژگی های متعددی نظير قابليت ارسال داده در مسافت های طولانی ، ارائه پهنای باند بالا ، انتقال اطلاعات نظير به نظير مورد نياز بر روی ستون فقرات شبکه های محلی و شبکه های WAN می باشد . با استفاده از رسانه های نوری ، از نور برای انتقال داده بر روی فيبرهای نازک شيشه ای و يا پلاستيک استفاده می گردد . فرستنده فيبر نوری ، سيگنال های الکتريکی را به سيگنال های نوری تبديل و در ادامه آنان را بر روی فيبر ارسال می نمايد . در نهايت ، دريافت کننده سيگنال های نوری آنان را به سيگنال های الکتريکی تبديل خواهد کرد . در کابل های فيبرنوری ، الکتريسته ای وجود نداشته و شيشه استفاده شده در کابل فيبر نوری يک عايق مناسب الکتريکی است .
  • شبکه های بدون کابل : نوع و نحوه ارتباط فيزيکی عناصر موجود در يک شبکه کامپيوتری می تواند تاثير مستقيمی در نحوه اشتراک فايل ها ، عملکرد سرويس دهندگان و سرويس های ارائه شده بر روی يک شبکه را به دنبال داشته باشد . در شبکه های سنتی انعطاف لازم برای جابجائی يک کامپيوتر، محدود به ساختمان محل نصب شبکه و نوع رسانه استفاده شده برای محيط انتقال است . با معرفی شبکه های بدون کابل ، امکان ارتباط کامپيوترها در محدوده بيشتری فراهم و سناريوئی ديگر به منظور برپاسازی شبکه های کامپيوتری مطرح گرديد. انعطاف شبکه های بدون کابل يکی از مهمترين ويژگی های اين نوع شبکه ها محسوب می گردد ، گرچه همچنان اين نوع شبکه های دارای چالش هائی در زمينه امنيت و سرعت بالای انتقال داده می باشند .

کابل ها دارای مشخه های متفاوتی می باشند که اهم آنان عبارتند از :

  • سرعت انتقال داده : نرخ انتقال داده از طريق کابل را مشخص می نمايد که يکی از پارامترهای بسيار مهم در شبکه های کامپيوتری است .
  • نوع انتقال داده : نحوه ارسال اطلاعات ( ديجيتال و يا آنالوگ ) را مشخص می نمايد .انتقال اطلاعات به صورت ديجيتال يا Baseband و يا آنالوگ يا Broadband دارای تاثيری مستقيم بر نحوه ارسال اطلاعات در يک شبکه کامپيوتری است .
  • حداکثر مسافت انتقال داده : حداکثر مسافت ارسال يک سيگنال بدون اين که تضعيف و يا دچار مشکل گردد را مشخص می نمايد .

متداولترین روش اتصال کامپیوترها در یک شبکه استفاده از کابل است. کابل ها علی رغم ساده و ارزان بودن دارای محدودیت هایی نیز هستند. مثلاً نمی توان دو دفتر یک شرکت را که در دو نقطه از یک شهر واقع هستند، توسط کابل به هم ارتباط داد. به علاوه استفاده از کابل در بسیاری از مواقع دست و پاگیر است. برای غلبه بر این محدودیت ها در بعضی از شبکه ها، از محیط واسطه انتقال رادیویی یا بی سیم استفاده می شود. تکنولوژی بی سیم به عنوان جایگزین سیستم کابل کشی به سرعت در صنعت نرم افزار و سخت افزار مطرح شده است. در بعضی از شبکه ها، از سیستم بی سیم برای پشتیبانی از شبکه در هنگام آسیب دیدگی کابل ها استفاده می شود. شبکه هایی که از تکنولوژی بی سیم برای ارتباط استفاده می کنند، شبکه های بی سیم (Wireless) نام دارند. در شبکه های بی سیم از امواج رادیویی به عنوان محیط انتقال استفاده می شود. امواج رادیویی مورد استفاده در شبکه های بی سیم را از نظر فرکانس به کار رفته به سه گروه تقسیم می کنند. امواج رادیویی، مایکروویو و مادون قرمز.

  • امواج رادیویی (Radio Frequency): فرکانس امواج رادیویی (RF) به کار رفته در شبکه های بی سیم بین محدوده ۱۰ کیلوهرتز تا چند گیگاهرتز قرار می گیرند. امواج RF به خودی خود در تمام جهت ها منتشر می شوند، اما می توان به کمک آنتن های ویژه جهت انتشار این امواج را محدود به یک سمت خاص نمود. برد انتشار امواج رادیویی بسیار زیاد است ضمن آنکه می توان به کمک دستگاه های فرستنده – گیرنده (Transceiver) رادیویی، این امواج را برای ارسال به نقاط دورتر تقویت کرد. سرعت انتقال داده در سیستم های رادیویی بین ۱ تا ۱۱ مگابیت برثانیه است. سیستم رادیویی RF می تواند در سیستم های شبکه ای سیار یا Mobile نیز مورد استفاده قرار گیرد. ارتباطات در این محدوده نیاز به مجوز ندارند.
  • مایکروویو (Microwave): نوع دیگر شبکه های بی سیم از امواج رادیویی در باند فرکانسی مایکروویو برای محیط انتقال استفاده می کنند. امواج مایکروویو برخلاف امواج RF فقط در یک جهت منتشر می شوند. این امواج در برابر تداخل حاصل از فعالیت های الکتریکی اتمسفری نظیر رعد و برق بسیار حساس هستند. در سیستم های مایکروویو نیز همانند امواج RF سرعت انتقال داده به فرکانس سیگنال بستگی داشته و در ناحیه ای بین یک تا ده Mbps قرار می گیرد. فرکانس سیگنال در سیستم های مایکروویو بین ۴ تا ۱۴ گیگاهرتز می باشد. سیستم های مایکروویو به دو صورت مورد استفاده قرار می گیرند: سیستم های زمینی و سیستم های ماهواره ای. سیستم های مایکروویو زمینی از آنتن های بشقابی دو طرفه برای رله امواج استفاده می کنند و باید دارای مجوز باشند. سیستم های ماهواره ای مایکروویو از طیف فرکانس باند کوتاه استفاده کرده و برای رله آن ها از ماهواره ها کمک گرفته می شود. تضعیف در سیستم های رادیویی RF و مایکروویو نیز وجود دارد. در این سیستم ها، تضعیف به اندازه آنتن و فرکانس سیگنال بستگی دارد.
  • مادون قرمز (IR): نوع سوم شبکه های بی سیم از امواج رادیویی در فرکانس امواج نور در ناحیه مادون قرمز برای محیط انتقال استفاده می کنند. برای تولید امواج مادون قرمز از دیود های نور گسیل (LED) یا دیودهای لیزری (ILD) استفاده می شود. استفاده از امواج نوری مادون قرمز برای محیط های سربسته بسیار مناسب است. هزینه تجهیزات این سیستم به کیفیت مورد استفاده و تولید کننده آنها بستگی دارد. از آنجایی که فرکانس امواج رادیویی در ناحیه مادون قرمز بالا است، سرعت انتقال داده در سیستم های مادون قرمز نیز بالا بوده و بین یک مگابیت بر ثانیه تا ۱۶ مگابیت برثانیه می باشد.

علت مقبولیت شبکه های WLAN:

شبکه های Wireless LAN شبکه محلی بدون کابل است که همان مزایا و وضعیت تکنولوژی LAN را دارد.شبکه های محلی بی سیم به جای استفاده از کابل های هم محور، به هم تابیده یا فیبر نوری از فرکانس های رادیویی RF استفاده می کند. شبکه های بی سیم با اتکا به امواج گسترده (Spreed Spectrum) که حساسیت کمتری نسبت به نویز رادیویی و تداخل دارند عمل می کنند. لذا برای انتقال اطلاعات بسیار مناسب می باشند.

2-1- حرکت از LAN کابلی به بی سیم:

اترنت تکنولوژی حکمفرما در دنیای کابلی است که توسط سازمان IEEE با استاندارد ۸۰۲.۳ تعریف شده است. و یک استاندارد کامل با سرعت بالا و قابلیت دسترسی گسترده می باشد. اترنت امکان انتقال اطلاعات باا سرعت ده مگابیت در ثانیه را دارد و نوع سریع تر آن با سرعت صد مگابیت در ثانیه اطلاعات را انتقال می دهد. اولین فناوری شبکه محلی بی سیم در باند ۹۰۰ مگاهرتز و سرعت پایین (۱ تا ۲ مگابیت برثانیه) متولد شد. علیرغم کمبودها و بخصوص سرعت پایین، آزادی و انعطاف پذیری بی سیم باعث شد این فناوری تاز
ه راه خود را به خرده فروشی ها و انبارهایی که دستگاه های قابل حمل در دست را برای مدیریت و دریافت اطلاعات استفاده می کردند، باز کند. در سال ۱۹۹۱ شبکه های بی سیم از اقبال عمومی گسترده برخوردار شدند. یک سال بعد شرکت ها به تولید دستگاه های شبکه های بی سیم که در باند ۲/۴ گیگاهرتزی کار می کردند، روی آورند. در ژوئن ۱۹۹۷، IEEE استاندارد ۸۰۲.۱۱ را برای شبکه های محلی بی سیم ارائه داد. استاندارد ۸۰۲.۱۱ از انتقال با نور مادون قرمز و دو نوع انتقال رادیویی با پهنای باند ۲/۴ گیگاهرتز و سرعت انتقال داده ۲ مگابیت بر ثانیه پشتیبانی می کند.

در سپتامبر سال ۱۹۹۹ نیز استاندارد IEEE ۸۰۲.۱۱b برای انتقال اطلاعات بصورت بی سیم با سرعت ۱۱

مگابیت برثانیه معرفی گردید.

 

شبكه‌هاي محلي(LAN)  براي خانه و محيط کار مي توانند به دو صورت کابلي(Wired)  يا بي سيم   Wireless) ) طراحي گردند . درابتدا اين شبكه ها به روش کابلي با استفاده از تكنولوژي Ethernet  طراحي مي شدند اما اکنون با روند رو به افزايش استفاده از شبكه هاي بي سيم با تكنولوژي Wi-Fi مواجه هستيم .

شکل 1-1- شبکه بی سیم

در شبكه هاي کابلی (که در حال حاضر بيشتر با توپولوژي ستاره اي بكار مي روند )بايستي از محل هر ايستگاه کاري تا دستگاه توزيع کننده(هاب يا سوئيچ ) به صورت مستقل کابل کشي صورت پذيرد(طول کابل ازنوع CAT5 نبايستي 100 متر بيشتر باشد در غير اينصورت از فيبر نوري استفاده ميگردد) که تجهيزات بكار رفته از دونوع غير فعال(Passive ) مانند کابل ، پريز، داکت ، پچ پنل …. . و فعال (Active) مانند هاب ،سوئيچ ،روتر ، کارت شبكه و…  هستند .

موسسه مهندسي IEEE استانداردهاي 802.3u  را براي Fast Ethernet و802.3ab و 802.3z را براي Gigabit Ethernet (مربوط به کابلهاي الكتريكي و نوري ) در نظر گرفته است.

شبكه هاي بي سيم نيز شامل دستگاه مرکزي (Access Point) که هر ايستگاه آاري مي تواند حداآثر تا فاصله 30 متر ي آن (بدون مانع ) قرار گيرد. شبكه هاي بي سيم(Wlan) يكي از سه استاندارد ارتباطي Wi-Fi زير را بكار مي برند:

802.11 b • كه اولين استانداردي است که به صورت گسترده بكار رفته است .

802.11 a • سريع‌تر اما گرانتر از 802.11 b مي باشد.

802.11 g • جديدترين استاندارد که شامل هر دو استاندارد قبلي بوده و از همه گرانتر ميباشد.

هر دونوع شبكه هاي کابلي و بي سيم ادعاي برتري بر ديگري را دارند اما انتخاب صحيح با در نظر گرفتن قابليتهاي آنها ميسر مي باشد.

3-1- عوامل مقايسه

در مقايسه شبكه هاي بي سيم و کابلي مي تواند قابليتهاي زير مورد بررسي قرار گيرد:

  • نصب و راه اندازي
  • هزينه
  • قابليت اطمينان
  • کارائی
  • امنيت

*نصب و راه اندازي

در شبكه هاي کابلي بدليل آنكه به هر يك از ايستگاههاي کاري بايستي از محل سويئچ مربوطه کابل کشيده شود با مسائلي همچون سوارخ‌كاري، داکت‌کشي ، نصب پريز و…  مواجه هستيم در ضمن اگر محل فيزيكي ايستگاه مورد نظر تغيير يابد بايستي که کابل کشي مجدد و  …صورت پذيرد شبكه‌هاي بي سيم از امواج استفاده نموده و قابليت تحرك بالائي را دارا هستند بنابراين تغييرات در محل فيزيكي ايستگاه‌هاي کاري به راحتي امكان پذير مي باشد براي راه اندازي آن کافيست که از روشهاي زير بهره برد:

Ad hoc • که ارتباط مستقيم يا همتا به همتا (peer to peer) تجهيزات را با يكديگر ميسرمي‌‌سازد.

Infrastructure • که باعث ارتباط تمامي تجهيزات با دستگاه مرکزي مي شود.

بنابراين ميتوان دريافت که نصب و راه اندازي شبكه هاي کابلي يا تغييرات در آن بسيار مشكل تر نسبت به مورد مشابه يعني شبكه هاي بي سيم است .

* هزينه

تجهيزاتي همچون هاب ، سوئيچ يا کابل شبكه نسبت به مورد هاي مشابه در شبكه هاي بي سيم ارزانتر مي باشد اما درنظر گرفتن هزينه هاي نصب و تغييرات احتمالي محيطي نيز قابل توجه است . قابل به ذکر است که با رشد روز افزون شبكه هاي بي سيم ، قيمت آن نيز در حال کاهش است .

* قابليت اطمينان

تجهيزات کابلي بسيار قابل اعتماد ميباشند که دليل سرمايه گذاري سازندگان از حدود بيست سال گذشته نيز همين مي‌باشد فقط بايستي در موقع نصب و يا جابجائي ، اتصالات با دقت کنترل شوند.

تجهيزات بي سيم همچون Broadband Router ها مشكلاتي مانند قطع شدن هاي پياپي ، تداخل امواج الكترومغناظيس، تداخل با شبكه‌هاي بي سيم مجاور و …  را داشته اند که روند رو به تكامل آن نسبت به گذشته (802.11 g) باعث بهبود در قابليت اطمينان نيز داشته است .

* کارائي

شبكه هاي کابلي داراي بالاترين کارائي هستند در ابتدا پهناي باند  Mbps 10  سپس به پهناي باندهاي بالاتر (100 Mbps و1000 Mbps ) افزايش يافتند حتي در حال حاضر سوئيچ‌هائي با پهناي باند 1 Gbps  نیز ارائه شده است . شبكه هاي بي سيم با استاندارد 802.11 b حداکثر پهناي باند 11 Mbps و 802.11 a  و 802.11g پهنای باند 54 Mbps  را پشتيباني مي کنند حتي در تكنولوژيهاي جديد اين روند با قيمتي نسبتا بالاتر به 108Mbps نيز افزايش داده شده است علاوه بر اين کارایی wi-fi   نسبت به فاصله حساس مي باشد يعني حداکثر فاصله نسبت به Access Point پايين خواهد آمد. اين پهناي باند براي به اشتراك گذاشتن اينترنت يا فايلها کافي بوده اما براي برنامه‌هايي که نياز به رد و بدل اطلاعات زياد بين سرور و ايستگاهاي کاری( Client to Server )دارند کافي نيست.

* امنيت

بدليل اينكه در شبكه هاي کابلي که به اينترنت هم متصل هستند، وجود ديواره آتش از الزامات است و تجهيزاتي مانند هاب يا سوئيچ به تنهايي قادر به انجام وظايف ديواره آتش نميباشند، بايستي در چنين شبكه هايي ديواره آتش مجزايي نصب شود.

تجهيزات شبكه هاي بي‌سيم مانند Broadband Routerديواره آتش به صورت نرم افزاري وجود داشته و تنها بايستي تنظيمات لازم صورت پذيرد. از سوي ديگر به دليل اينكه در شبكه هاي بي سيم از هوا بعنوان رسانه انتقال استفاده ميشود، بدون پياده سازي تكنيك هاي خاصي مانند رمزنگاري، امنيت اطلاعات بطور آمل تامين نمي گردد استفاده از رمزنگاري ( Wired Equivalent Privacy) WEPباعث بالا رفتن امنيت در اين تجهيزات گرديده است .

 

 

انتخاب صحيح کدام است؟

با توجه به بررسي و آناليز مطالبي که مطالعه کرديد بايستي تصميم گرفت که در محيطي که اشتراك اطلاعات وجود دارد و نياز به ارتباط احساس مي شود کدام يك از شبكه هاي بي سيم و کابلي مناسبتر به نظر مي رسند . جدول زير خلاصه اي از معيارهاي در نظر گرفته شده در اين مقاله مي باشد . بعنوان مثال اگر هزينه براي شما مهم بوده و نياز به استفاده از حداکثر کارائي را داريد ولي پويائي براي شما مهم نمي باشد بهتر است از شبكه کابلي استفاده کنيد.

بنابراين اگر هنوز در صدد تصميم بين ايجاد يك شبكه کامپيوتري هستيد جدول زير انتخاب را براي شما ساده تر خواهد نمود.

جدول مقايسه‌اي :

نوع سرويس شبکه های کابلی شبکه های بی سیم
نصب و راه اندازی نسبتاً مشکل آسان
هزینه کمتر بیشتر
قابلیت اطمینان بالا متوسط
کارایی خیلی خوب خوب
امنیت خوب نسبتاً خوب
پویایی حرکت محدود پویاتر

 

 

Byadmin

مقدمه ای بر شبکه های بیسیم

مقدمه ای بر شبکه های بیسیم

احتیاجات بیشمار به پویایی کارها استفاده از تجهیزاتی مانند تلفن همراه وپیچرها به واسطه وجود شبکه‌های بی سیم امکان پذیر شده است اگر کاربر یا شرکت یا برنامه کاربردی خواهان آن باشد که داده واطلا عات مورد نیاز خود را به صورت متحرک وهر لحظه در اختیار داشته باشد شبکه‌های بی سیم جواب مناسبی برای انهاست شبکه‌های محلی برای خانه ومحیط کار می‌توانند به دو صورت کابلی وبی سیم طراحی گردنددر ابتدا این شبکه‌ها به روش کابلی وبا استفاده از تکنولوژی ایتر نت طراحی می‌شدند اما اکنون با روند رو به افزایش استفاده از شبکه‌های بیسیم با تکنولوژی اف ای هستیم در شبکه‌های کابلی (که در حال حاضر باتوپولوژی ستاره‌ای به کار میروند بایستی از محل هر ایستگاه کاری تا دستگاه توزیع کننده به صورت مستقل کابل کشی صورت گیرد طول کابل نبایستی از صد متر بیشتر باشد در غیر این صورت از فیبرنوری استفاده می‌گرددکه تجهیزات به کار رفته از دو نوع غیر فعال مانند کابل پریز وداکت وفعال مانند هاب وسوییچ هستند. موسسه مهندسی استانداردهای ۸۰۲-۳ رابرای اترنت و۸۰۲-۲ را برای کابل‌های الکتیکی ونوری در نظر گرفته‌است شبکه‌های بی سیم نیز شامل دستگاه مرکزی می‌باشند که هر ایستگاه کاری می‌تواند حداکثر تا فاصله سی متری ان بدون مانع قرار گیرد امروزه با بهبود عملکردوکارایی وعوامل امنیتی شبکه‌های بی سیم به شکل قابل توجهی در حال رشد وگسترش هستندواستاندارد ۸۰۲-۱۱ استاندارد بنیادی است که شبکه‌های بیسیم بر مبنای ان طراحی شده انداین استاندارددر سال ۱۹۹۹ میلادی مجددا باز نگری شدوبه نگارش روز در امد تکمیل این استاندارددر سال ۱۹۹۷ شکل گیری وپیدایش شبکه سازی محلی بی سیم ومبتنی بر استاندارد را به دنبال داشت این استاندارد پهنای باند ۲ مگا را تعریف می‌کندکه در شرایط نامساعد ومحیط‌های دارای اغتشاش پهنای باند می‌تواند به ۱ مگا نیز کاهش یابد یکی از نکات قابل توجه در این استاندارد استفاده از رسانه مادون قرمز است کمیته ۸۰۲-۱۱ کمیته‌ای است که سعی داردقابلیت اترنت رادر محیط شبکه‌های بیسیم ارایه کند این کمیته در نظر دارد که ارتباط کیفیت سرویس سیمی رابه دنیای بی سیم بیاورد کمیته ۸۰۲-۱۲ سعی دارد نرخ ارسال داده‌ها را درباند فرکانسی افزایش دهدباند فرکانسی یا باند فرکانسی صنعتی وپژوهشی یک باند فرکانسی ربدون مجوز است استفاده از این باند که در محدوده ۲۴۰۰ مگاهرتز تا ۲۴۸۳ مگاهرتزقراردارد براساس مقررات در کاربرد‌های تشعشع رادیویی نیاز به مجوز ندارد این استاندارد تا کنو ن نهایی نشده‌است ومهم ترین علت ان رقا بت شدید میان تکنیک‌های مدو لا سیون است اعضای این کمیته وسازندگان تراشه موافقت کرده‌اند که از تکنیک تسهیم استفاده نمایند ولی با این وجود این روش نیز می‌تواند به عنوان یک روش جایگزین انتخاب شود محیط‌های بی سیم دارای خصوصیات وویژگی‌های منحصر به فردی می‌باشد که در مقایسه با شبکه محلی بی سیم جایگاه خاصی را به این گونه شبکه‌ها می‌بخشد به طور مشخص ویژگی‌های فیزیکی یک شبکه محلی بی سیم . محدودیت‌های فاصله . افزایش نرخ خطا وکاهش قابلیت اطمینان . همبندی‌های پویا ومتغیر وعدم وجود یک ارتباط پایدار ومداوم در مقایسه با اتصال سیمی می‌باشد .