Skip to Content

آرشیو

کتاب آموزش جامع و کامل Cacti

کتاب آموزش جامع و کامل Cacti

بدون تردید هر شبکه ای در هر مقیاسی نیاز به یک سیستم مانیتورینگ جهت بررسی ساختار شبکه می باشد.

مزایای اصلی استفاده از مانیتورینگ :

  1. بررسی قطع/وصل شدن پورت ها
  2. بررسی مصرف بیش از اندازه bps/pps بر روی پورت ها
  3. بررسی قطعی های یک یا چند Device در شبکه
  4. داشتن MAP شبکه
  5. رفع مشکلات شبکه ای در اسرع وقت
  6. بررسی پورتکل های مسیریابی اعم از BGP , OSPF و…
  7. محاسبه میزان مصرف مشترکین در موارد تجاری
  8. تنظیم ارسال هشدار های گوناگون برای مدیران شبکه
  9. و بسیاری موارد دیگر

یکی از نرم افزار های رایگان مانیتورینگ شبکه نرم افزار سورس باز Cacti می باشد که با نصب آن تمامی مزایای فوق و بسیاری بیشتر از آن فراهم خواهد شد.
نرم افزار Cacti توسط پروتکل SNMP به دستگاه های مورد نظر شما متصل و آنها را طی Interval تنظیم شده توسط شما بررسی می کند. این نرم افزار بر پایه PHP/MySQL می باشد که عمدتا بر روی سیستم عامل های لینوکسی نصب و راه اندازی می شود و جهت ارائه گراف های خود از نرم افزار بسیار خوب RRDTool بهره برداری می کند.
همچنین این نرم افزار امکان ارائه پنل مانیتورینگ به مشتریان شما را ارائه می کند. که شما می توانید در این نرم افزار تعیین کنید که مشترک شما پس از لاگین به چه پورت هایی دسترسی داشته باشد.

کتاب آموزش جامع و کامل Cacti

کتاب آموزش جامع و کامل Cacti

 

شما می توانید نسخه الکترونیکی آنرا از اینجا دریافت کنید .

 

 

 

ادامه مطلب

پروتکل های مسیریابی

پروتکل های مسیریابی

امروزه علم کامپیوتر به حدی پیشرفت کرده که بسیاری از علوم دیگر پیشرفتشان وابسته به علم کامپیوتر می باشد.شبکه های کامپیوتری به حدی پیشرفت کرده اند که توانسته اند جهان را به یک دهکده علمی کوچک تبدیل نمایند.برای برقراری ارتباط بین این شبکه ها نیازمند به یک ستون فقرات می باشیم٬ این شبکه زیر بنایی که از تعداد زیادی مسیریاب تشکیل شده است وظیفه انتقال اطلاعات را دارد. بر روی این مسیریاب ها باید الگوریتم هایی اجرا شوند تا بتوانند بهترین مسیر را برای انتقال اطلاعات در این دهکده را انتخاب کنند.

1-5- مسیریابی

در شبکه‌های ادهاک، نودهای شبکه دانش قبلی از توپولوژی شبکه‌ای که درآن قرار دارند، ندارند به همین دلیل مجبورند برای ارتباط با سایر نودها، محل مقصد را در شبکه کشف کنند. در اینجا ایده اصلی این است که یک نود جدید به طور اختیاری حضورش را در سراسر شبکه منتشر می‌کند وبه همسایه‌هایش گوش می‌دهد. به این ترتیب نود تا حدی ازنودهای نزدیکش اطلاع بدست می‌آورد و راه رسیدن به آنها را یاد می‌گیرد به همین ترتیب که پیش رویم همه نودهای دیگر را می‌شناسد و حداقل یک راه برای رسیدن به آنها را می‌داند.

2-5- پروتکل‌های مسیریابی

پروتکل‌های مسیریابی بین هر دو نود این شبکه به دلیل اینکه هر نودی می‌تواند به طور تصادفی حرکت کند و حتی می‌تواند در زمانی از شبکه خارج شده باشد، مشکل می‌باشند. به این معنی یک مسیری که در یک زمان بهینه‌است ممکن است چند ثانیه بعد اصلا این مسیر وجود نداشته باشد. در زیر سه دسته از پروتکل‌های مسیر یابی که در این شبکه‌ها وجود دارد را معرفی می‌کنیم.

  1. Table Driven Protocols: در این روش مسیریابی هرنودی اطلاعات مسیریابی را با ذخیره اطلاعات محلی سایر نودها در شبکه استفاده می‌کند و این اطلاعات سپس برای انتقال داده از طریق نودهای مختلف استفاده می‌شوند.
  2. On Demand Protocols: روش ایجاب می‌کند مسیرهایی بین نودها تنها زمانی که برای مسیریابی بسته موردنیاز است تا جایی که ممکن است بروزرسانی روی مسیرهای درون شبکه ندارد به جای آن روی مسیرهایی که ایجاد شده و استفاده می‌شوند وقتی مسیری توسط یک نود منبع به مقصدی نیاز می‌شود که آن هیچ اطلاعات مسیریابی ندارد، آن فرآیند کشف مسیر را از یک نود شروع می‌کند تا به مقصد برسد. همچنین ممکن است یک نود میانی مسیری تا مقصد داشته باشد. این پروتکل‌ها زمانی موثرند که فرآیند کشف مسیر کمتر از انتقال داده تکرار شود زیرا ترافیک ایجاد شده توسط مرحله کشف مسیر در مقایسه با پهنای باند ارتباطی کمتر است.
  3. Hybrid Protocols: ترکیبی از دو پروتکل بالاست. این پروتکل‌ها روش مسیریابی بردار-فاصله را برای پیدا کردن کوتاه‌ترین به کار می‌گیرند و اطلاعات مسیریابی را تنها وقتی تغییری در توپولوژی شبکه وجود دارد را گزارش می‌دهند. هر نودی در شبکه برای خودش یک zone مسیریابی دارد و رکورد اطلاعات مسیریابی در این zone ها نگهداری می‌شود. مثل ZRP (zone routing protocol ).
  4. پرتکل بردار مسیر : مسیریابی حالت لینک و بردار فاصله پروتکل غالب می‌باشند. آنها از سیستم ناشناخته درونی استفاده می‌نمایند ولی بین سیستم‌های ناشناخته نمی‌باشند. این دو نوع پروتکل می‌توانند در شبکه‌های بزرگ مسیریابی شوند و به این طریق مسیریابی درون حوزه‌ای عملی خواهد شد. مسیریابی حالت لینک می‌تواند اطلاعات زیادی را وارد جدول کند، این عامل تشکیل ترافیک بزرگ می‌باشد. مسیریابی بردار برای درون حوزه‌ها استفاده می‌شود و مانند بردار راه دور است. در این جا یک گره در هر سیستم ناشناخته وجود دارد که به عنوان کل سیستم عمل خواهد کرد. این گره از نوع سخنگو است. این گره جدول مسیریابی را تولید کرده و به گره‌های همجوار می‌فرستد. در این شرایط فقط گره‌های سخنگو در هر سیستم با یکدیگر ارتباط برقرار می‌کنند. این گره می‌تواند در مسیر پیش رود و در سیستم ناشناخته فعال شود.

پروتکل‌های روش اول مسیریابی

  1. DSDV: این پروتکل بر مبنای الگوریتم کلاسیک Bellman-Ford بنا شده‌است. در این حالت هر گره لیستی از تمام مقصدها و نیز تعداد پرش‌ها تا هر مقصد را تهیه می‌کند. هر مدخل لیست با یک عدد شماره گذاری شده‌است. برای کم کردن حجم ترافیک ناشی از بروز رسانی مسیرها در شبکه از incremental -packets استفاده می‌شود. تنها مزیت این پروتکل اجتناب از به وجود آمدن حلقه‌های مسیریابی در شبکه‌های شامل مسیریاب‌های متحرک است. بدین ترتیب اطلاعات مسیرها همواره بدون توجه به این که آیا گره در حال حاضر نیاز به استفاده از مسیر دارد یا نه فراهم هستند.
  2. معایب: پروتکل DSDV نیازمند پارامترهایی از قبیل بازه زمانی بروزرسانی اطلاعات و تعداد بروزرسانی‌های مورد نیاز می‌باشد.
  3. WRP: این پروتکل بر مبنای الگوریتم path-finding بنا شده با این استثنا که مشکل شمارش تا بینهایت این الگوریتم را برطرف کرده‌است. در این پروتکل هر گره، چهار جدول تهیه می‌کند: جدول فاصله، جدول مسیر یابی، جدول هزینه لینک و جدولی در مورد پیام‌هایی که باید دوباره ارسال شوند. تغییرات ایجاد شده در لینک‌ها از طریق ارسال و دریافت پیام میان گره‌های همسایه اطلاع داده می‌شوند.
  4. CSGR: در این نوع پروتکل گره‌ها به دسته‌ها تقسیم بندی می‌شوند. هر گروه یک سر گروه دارد که می‌تواند گروهی از میزبان‌ها را کنترل و مدیریت کند. از جمله قابلیت‌هایی که عمل دسته بندی فراهم می‌کند می‌توان به اختصاص پهنای باند و دسترسی به کانال اشاره کرد. این پروتکل از DSDV به عنوان پروتکل مسیریابی زیر بنایی خود استفاده می‌کند. نیز در این نوع هر گره دو جدول یکی جدول مسیریابی و دیگری جدول مریوط به عضویت در گره‌های مختلف را فراهم می‌کند.
  5. معایب: گره‌ای که سر واقع شده سربار محاسباتی زیادی نسبت به بقیه دارد و به دلیل اینکه بیشتر اطلاعات از طریق این سرگروه‌ها برآورده می‌شوند در صورتی که یکی از گره‌های سرگروه دچار مشکل شود کل و یا بخشی از شبکه آسیب می‌بیند.
  6. STAR: این پروتکل نیاز به بروز رسانی متداوم مسیرها نداشته و هیچ تلاشی برای یافتن مسیر بهینه بین گره‌ها نمی‌کند.

پروتکل‌های روش دوم مسیریابی

  1. SSR: این پروتکل مسیرها را بر مبنای قدرت و توان سیگنال‌ها بین گره‌ها انتخاب می‌کند. بنابراین مسیرهایی که انتخاب می‌شوند نسبتا قوی تر هستند. می‌توان این پروتکل را به دو بخش DRP و SRP تقسیم کرد. DRP مسئول تهیه و نگهداری جدول مسیریابی و جدول مربوط به توان سیگنال‌ها می‌باشد.SRP نیز بسته‌های رسیده را بررسی می‌کند تا در صورتی که آدرس گره مربوط به خود را داشته باشد آن را به لایه‌های بالاتر بفرستد.
  2. DSR: در این نوع، گره‌های موبایل بایستی حافظه‌هایی موقت برای مسیرهایی که از وجود آنها مطلع هستند فراهم کنند. دو فاز اصلی برای این پروتکل در نظر گرفته شده‌است:کشف مسیر و بروز رسانی مسیر. فاز کشف مسیر از route request/reply packet ها و فاز بروز رسانی مسیر از تصدیق‌ها و اشتباهای لینکی استفاده می‌کند.
  3. TORA: بر اساس الگوریتم مسیریابی توزیع شده بنا شده و برای شبکه‌های موبایل بسیار پویا طراحی شده‌است. این الگوریتم برای هر جفت از گره‌ها چندین مسیر تعیین می‌کند و نیازمند کلاک سنکرون می‌باشد. سه عمل اصلی این پروتکل عبارتند از: ایجاد مسیر. بروز رسانی مسیر و از بین بردن مسیر.
  4. AODV: بر مبنای الگوریتم DSDV بنا شده با این تفاوت که به دلیل مسیریابی تنها در زمان نیاز میزان انتشار را کاهش می‌دهد. الگوریتم کشف مسیر تنها زمانی آغاز به کار می‌کند که مسیری بین دو گره وجود نداشته باشد.
  5. RDMAR: این نوع از پروتکل فاصلۀ بین دو گره را از طریق حلقه‌های رادیویی و الگوریتم‌های فاصله یابی محاسبه می‌کند. این پروتکل محدوده جستجوی مسیر را مقدار مشخص و محدودی تایین می‌کند تا بدین وسیله از ترافیک ناشی از سیل آسا در شبکه کاسته باشد. تقسیم بندی های مختلفی در مورد پروتوکل های مسیر یابی شبکه های Mobile ad hoc وجود دارد که از این میان می توان به ۲ نوع زیر اشاره کرد:

تقسیم بندی اول :

  1. Pro active (Table driven)
  2. Reactive (On demand)
  3. Hybrid (Table driven & On demand)

هر کدام از این انواع خود شامل پروتوکل هایی هستند که در جدول زیر به چند مورد اشاره شده است:

تقسیم بندی دوم:

  1. Flat routing protocols
  2. Hierarchal routing approaches
  3. GPS Augmented geographical routing approaches

در اینجا به توضیحاتی در مورد پروتوکل های تقسیم بندی اول می پردازیم:

: Table driven pro active در پروتوکلهای از این نوعnode ها مدام در حال جستجوی اطلاعات مسیر یابی جدید درون شبکه هستند به صورتی که حتی با تغییر مکان node ها در صورت نیاز به راحتی می توان مسیر مناسبی را یافته و برای ارسال و دریافت اطلاعات بین هر دو node ی استفاده کرد. به عبارت بهتر می توان گفت که در این شبکه ها مسیر ها از قبل موجود هستند.و به محض آنکه node ی اقدام به ارسال داده به node دیگری کند قادر خواهد بود مسیر موجود را از روی اطلاعات از قبل جمع آوری شده شناسایی کرده و مورد استفاده قرار دهد و لذا تاخیری در این مورد متوجه node نیست.

DSDV   : این پروتوکل بر مبنای الگوریتم کلاسیک Bellman-Ford بنا شده است.در این حالت هر node لیستی از تمام مقصد هاو نیز تعداد hop ها تا هر مقصد را تهیه می کند.هر مدخل لیست با یک عدد شماره گزاری شده است. برای کم کردن حجم ترافیک ناشی از به روز رسانی مسیر ها در شبکه از incremental packets  استفاده می شود.تنها مزیت این پروتوکل اجتناب از به وجود آمدن حلقه های مسیر یابی در شبکه های شامل مسیر یاب های متحرک است.بدین ترتیب اطلاعات مسیر ها همواره بدون توجه به این که آیا node در حال حاضر نیاز به استفاده از مسیر دارد یا نه فراهم هستند.

معایب : پروتوکل DSDV نیازمند پارامترهایی از قبیل بازه ی زمانی به روز رسانی اطلاعات و تعداد به روز رسانی های مورد نیاز می باشد.

: WRP این پروتوکل بر مبنای الگوریتم path-finding بنا شده با این استثنا که مشکل count-to-infinity این الگوریتم را برطرف کرده است. در این پروتوکل هر node , ۴ جدول تهیه می کند:

  1. جدول فاصله
  2. جدول مسیر یابی
  3. جدول link-cost
  4. جدولی در مورد پیامهایی که باید دوباره ارسال شوند.

تغییرات ایجاد شده در لینکها از طریق ارسال و دریافت پیام میان node های همسایه اطلاع داده می شوند.

: CSGR در این نوع پروتوکل node ها به دسته ها یا cluster هایی تقسیم بندی می شوند. هر گروه یک cluster head دارد که می تواند گروهی از host ها را کنترل و مدیریت کند.از جمله قابلیت هایی که عمل  clustering  فراهم می کند می توان به اختصاص پهنای باندو channel access اشاره کرد.این پروتوکل از DSDV  به عنوان پروتوکل مسیریابیی زیر بنایی خود استفاده می کند . نیز در این نوع هر node دو جدول یکی جدول مسیریابیی و دیگری جدول مریوط به عضویت در node های مختلف را فراهم می کند.

معایب : node ی که head واقع شده سربار محاسباتی زیادی نسبت به بقیه داردو به دلیل اینکه بیشتر اطلاعات از طریق این head ها برآورده می شونددر صورتی که یکی از node های head دچار مشکل شود کل و یا بخشی از شبکه آسیب می بیند.

: STAR این پروتوکل نیاز به به روز رسانی متداوم مسیر ها نداشته و هیچ تلاشی برای یافتن مسیر بهینه بین node ها نمی کند.

:On demand Reactiveدر این نوع پروتوکل مسیر ها تنها زمانی کشف می شوند که مبدا اقدام به برقراری ارتباط با node دیگری کند.زمانی که یک node بخواهد با node دیگری ارتباط برقرار کند بایستی فرایند کشف مسیر ( Route Discovery Process ) را در شبکه فراخوانی کند.در این حالت قبل از بر قرار شدن ارتباط , تاخیر قابل توجهی مشاهده می شود.

: SSR این پروتوکل مسیرها را بر مبنای قدرت و توان سیگنالها بین node ها انتخاب می کند. بنابراین مسیرهایی که انتخاب می شوندد نسبتا قوی تر هستند . می توان این پروتوکل را به ۲ بخش DRP) Dynamic Routing Protocol)  و SRP ( Static Routing Protocol) تقسیم کرد .

DRP: مسئول تهیه و نگهداری جدول مسیریابی و جدول مربوط به توان سیگنال ها می باشد.

SRP: نیز packet های رسیده را بررسی می کند تا در صورتی که آدرس node مربوط به خود را داشته باشد آن را به لایه های بالاتر بفرستد و در غیر این صورت به شبکه.

: DSR در این نوع node های موبایل بایستی cache هایی برای مسیر هایی که از وجود آنها مطلع هستند فراهم کنند.دو فاز اصلی برای این پروتوکل در نظر گرفته شده است کشف مسیر و به روز رسانی مسیر. فاز کشف مسیر از route request/reply packet ها و فاز به روز رسانی مسیر از acknowledgement ها و error های لینکی استفاده می کند.

: TORA بر اساس الگوریتم مسیر یابی توزیع شده بنا شده و برای شبکه های mobile بسیار پویا طراحی شده است.این الگوریتم برای هر جفت از node ها چندین مسیر تعیین می کند و نیازمند clock سنکرون می باشد. ۳ عمل اصلی این پروتوکل عبارتند از :ایجاد مسیر. به روز رسانی مسیر و از بین بردن مسیر.

: AODV بر مبنای الگوریتم DSDV بنا شده با این تفاوت که به دلیل مسیریابی تنها در زمان نیاز میزان Broad casting را کاهش می دهد.الگوریتم کشف مسیر تنها زمانی آغاز به کار می کند که مسیری بین ۲ node وجود نداشته باشد .

: RDMAR این نوع از پروتوکل فاصله ی بین ۲ node را از طریق حلقه های رادیویی و الگوریتم های فاصله یابی محاسبه می کند. این پروتوکل محدوده ی جستجوی مسیر را مقدار مشخص و محدودی تایین می کند تا بدین وسیله از ترافیک ناشی از flooding در شبکه کاسته باشد.

Hybrid (Pro-active / Reactive): این مورد با ترکیب دو روش قبلی سعی در کاهش معایب کرده و از ویژگی های خوب هر دو مورد بهره می برد. این پروتوکل جدید ترین کلاس پروتوکل ها در این راستا می باشد. معروفترین پروتوکل از این نوع می توان به ZRP( Zone Routing protocol)  اشاره کرد.این پروتوکل از ویژگی های نوع Pro active برای مسیریابی node های نزدیک به هم و از ویژگی های نوع Reactive برای مسیر یابی node های دورتر استفاده می کند.

: ZRPنوعی از clustering است با این تفاوت که در این پروتوکل هر Node خود head بوده و به عنوان عضوی از بقیه ی cluster ها می باشد. به دلیل hybrid بودن کارایی بهتری دارد.

شاید بتوان شبکه های ad hoc را آسب پذیر ترین شبکه ها از لحاظ امنیتی و ضعیفترین در مقابل حملات نفوذگران دانست. به همین دلیل برخورد با این مسئله و رفع مشکلات مربوطه از مهمترین دغدغه های شخصی است که اقدام به را ه اندازی چنین شبکه ای می کند.از جمله مواردی که منجر به نا امن شدن این شبکه ها شده است می توان به موارد زیر اشاره کرد:

ـ کانال رادیویی از نوع broad cast به اشتراک گزارده شده.

  1. محیط عملیاتی نا امن
  2. نبود شناسایی (authentication) متمرکز.
  3. دسترسی محدود به منابع
  4. مشکلات و آسیت پزیری های فیزیکی.

زمانی که در مورد امنیت شبکه بحث می شود معمولا به عناوین چندی توجه می شود:

: Availability بدین معنی که شبکه در تمام زمان ها حتی در مواردی که دچار حمله شده بتواند به عمل خود ادامه بدهد.

: Confidentiality اطمینان از اینکه اطلاعات مشخص و معینی در اختیار کاربران خاصی قرار نگیرد.

: Authentication توانایی یک node در شناسایی و تشخیص node ی که با وی در ارتباط است.

: Integrity تضمین اینکه یک پیام پس از منتشر شدن تخریب نشده و از بین نمی رود.

: Non-repudiation فرستنده ی پیام نتواند ارسال خود را انکار کنند.

یک شبکه ی ad hoc به دلیل نداشتن ساختار ثابت و مشخص و نیز ارتباطات پویا بین node ها نیازمند ملاحظات امنیتی بیشتری نسبت به انواع دیگر شبکه است.

همان طور که قبلا نیز بیا ن شد در این شبکه ها هر node ی هم مسیر یاب است و هم end – system . بدین ترتیب node ها از هم متمایز نیستند و به این دلیل نیاز به یک پروتوکل مسیر بایی امن حس می شود. که در این راستا معمولا پروتکل های multi hop بث کار گرفته می شوند.

3-5- معنای حمل

این طرح‌ها بسته به معنای خود متفاوت هستند.

  • حمل Unicast برای یک پیام به حالت ویژه
  • بخش عامل حمل پیام به تمام گره‌های شبکه
  • حمل multicast برای یک گروه گره که در دریافت پیام نقش دارند.
  • حمل anycast برای ارسال به هر گروه و به خصوص نزدیکترین منبع. Unicast حالت غالب حمل پیام است و این جا بر آلگوریتم unicastتاکید داریم.

4-5- توزیع توپولوژی

شبکه‌های کوچک دارای جداول دستی هستند. شبکه‌های بزرگ توپولوژی پیچیده دارند. و به سرعت تغییر می‌کنند. به این طریق ساختار جداول غیرقابل طراحی خواهد شد. بیشتر این شبکه‌های تلفنی کلیدی (pstn) از این جداول استفاده می‌کنند و نقایص در مسیر این سیستم شناخته و رفع خواهند شد. مسیر یابی دینامیکی تلاشی برای حل مسئله و تشکیل ساختار خودکار جداول است. این براساس اطلاعات پروتکل مسیریابی عملی است. به این طریق شبکه‌ها از هر نقص ایمن خواهند شد. این دینامیک در اینترنت نقش فعال دارد. طراحی پروتکل‌ها به یک تماس ماهرانه نیاز دارد. نباید فرض کرد که شبکه سازی به نقطه اتوماسیون کامل رسیده‌است.

 

 

ادامه مطلب

آشنایی با شبکه های Wireless

آشنایی با شبکه های Wireless

Wireless به تکنولوژي ارتباطي اطلاق مي شود که در آن از امواج راديويي، مادون قرمز و مايکروويو ، به جاي سيم و کابل ، براي انتقال سيگنال بين دو دستگاه استفاده مي شود.از ميان اين دستگاه ها مي توان پيغامگيرها، تلفن هاي همراه، کامپيوتر هاي قابل حمل، شبکه هاي کامپيوتري، دستگاه هاي مکان ياب، سيستم هاي ماهواره اي و PDA ها را نام برد.تکنولوژي Wireless به سرعت در حال پيشرفت است و نقش کليدي را در زندگي ما در سرتاسر دنيا ايفا مي کند.

1-2-  شبکه های بدون کابل

شبکه های بدون کابل یکی از چندین روش موجود به منظور اتصال چند کامپیوتر به یکدیگر و ایجاد یک شبکه کامپیوتری است . در شبکه های فوق برای ارسال اطلاعات بین کامپیوترهای موجود در شبکه از امواج رادیویی استفاده می شود .

1-1-2-  مباني شبکه هاي بدون کابل

تکنولوژي شبکه هاي بدون کابل از ايده” ضرورتي به کابل ها ي جديدنمي باشد”، استفاده مي نمايند. در اين نوع شبکه ها، تمام کامپيوترها با استفاده از سيگنال هائي راديوئي اقدام به انتشار اطلاعات مورد نظر براي يکديگر مي نمايند. اين نوع شبکه ها داراي ساختاري ساده بوده و براحتي مي توان يک کامپيوتر متصل به اين نوع ازشبکه ها را مکان هاي ديگر استقرار و کماکن از امکانات شبکه بهره مند گرديد مثلا” درصورتي که اين نوع شبکه ها را در يک فضاي کوچک نظير يک ساختمان اداري ايجاد کرده باشيم و داراي يک کامپيوتر laptopباشيم که از کارت شبکه مخصوص بدون کابل استفاده مي نمايد، در هر مکاني از اداره مورد نظر که مستقر شده باشيم با استفاده از Laptopمي توان بسادگي به شبکه متصل و از امکانات مربوطه استفاده کرد.

شبکه هاي کامپيوتري از نقظه نظر نوع خدمات وسرويس دهي به دو گروه: نظير به نظيرو سرويس گيرنده / سرويس دهنده نقسيم مي گردند. در شبکه هاي نظير به نظير هرکامپيوتر قادر به ايفاي وظيفه در دو نقش سرويس گيرنده و سرويس دهنده در هرلحظه است. در شبکه هاي سرويس گيرنده / سرويس دهنده، هر کامپيوتر صرفا” مي تواند يک نقش را بازي نمايد.) سرويس دهنده يا سرويس گيرنده )در شبکه هاي بدون کابل که بصورت نظير به نظير پياده‌سازي مي گردنند، هر کامپيوتر قادر به ارتباط مستقيم با هر يک از کامپيوترهاي موجود در شبکه است. برخي ديگر از شبکه هاي بدون کابل بصورت سرويس گيرنده / سرويس دهنده، پياده سازي مي گردند. اين نوع شبکه ها داراي يک Access pointمي باشند.

دستگاه فوق يک کنترل کننده کابلي بوده و قادر به دريافت و ارسال اطلاعات به آداپتورهاي بدون کابل (کارت هاي شبکه بدون کابل) نصب شده در هر يک ازکامپيوترها مي باشند.

2-2- انواع شبکه های بی سیم :

چهار نوع متفاوت از شبکه هاي بدون کابل وجود دارد (از کند و ارزان تا سريع وگران )

BlueTooth *

IrDA *

SWAP) *  HomeRF)

(Wi-Fi  WECA) *

شبکه‌هاي Bluetooth  در حال حاضر عموميت نداشته و بنظر قادر به پاسخگوئي به کاربران براي شبکه ها ي با سرعت بالا نمي باشند. IrDA(Infrared Data Association) استانداردي به منظور ارتباط دستگاههائي است که از سيگنال ها ي نوري مادون قرمز استفاده مي نمايند. استاندارد فوق نحوه عمليات کنترل از راه دور،( توليد شده توسط يک توليد کننده خاص) و يک دستگاه راه دور (توليد شده توسط توليد کننده ديگر) را تبين مي کند. دستگاههاي IrDA از نورمادون قرمز استفاده مي نمايند.

قبل از بررسي مدل هاي Wi-Fi و SWAP لازم است که در ابتدا با استاندارد اوليه اي که دو مد ل فوق بر اساس آنها ارائه شده اند ، بيشتر آشنا شويم. اولين مشخصات شبکه هاي اترنت بدو ن کابل با نام IEEE 802.11 توسط موسسه IEEEعرضه گرديد. در استاندارد فوق دو روش به منظور ارتباط بين دستگاهها با سرعت دو مگابيت در ثانيهمطرح شد. دو روش فوق بشرح زير مي باشند:

(Direct-sequence spread spectrum )DSSS *

(Frequency-hopping spread spectrum )FHSS *

دو روش فوق از تکنولوژي  FSK(Frequency-shift keying) استفاده مي نمايند. همچنين دو روش فوق از امواج راديوئي  Spread-spectrum در محدوده4 / 2 گيگاهرتز استفاده مي نمايند.

Spread Spectrum بدين معني است که داده مورد نظر براي ارسال به بخش هاي ، کوچکتر تقسيم و هر يک از آنها با استفاده از فرکانس هاي گسسته قابل دستيابي در هر زمان ، ارسال خواهند شد. دستگاههائي که از DSSSاستفاده مي نمايند، هر بايت داده را به چندين بخش مجزا تقسيم و آنها را بصورت همزمان با استفاده از فرکانس هاي متفاوت، ارسال مي دارند.

DSSSاز پهناي باند بسيار بالائي استفاده مي نمايد( تقريبا” ٢٢ مگاهرتز) دستگاههائي که از FHSSاستفاده مي نمايند، دريک زمان پيوسته کوتاه ، اقدام به ارسال داده کرده و با شيفت دادن فرکانس (hop) بخش ديگري از اطلاعات را ارسال مي نمايند. با توجه به اينکه هر يک از دستگاههاي FHSSکه با يکديگر مرتبط مي گردند، بر اساس فرکانس مربوطه اي که مي بايست  Hopنمايند و از هر فرکانس در يک بازه زماني بسيار کوتاه استفاده مي نمايند(حدودا ٤٠٠ ميلي ثانيه)، بنابراين مي توان از چندين شبکه FHSS در يک محيط استفاده کرد(بدون اثرات جانبي). دستگاه‌هاي  FHSS صرفاً داراي پهناي باند يک مگاهرتز و يا کمتر مي باشند.

*SWAP و  HomeRF

HomeRF ، اتحاديه اي است که استانداري با نامSWAP (Shared Wireless Access protocol) را ايجاد نموده است . داراي شش کانال صوتي متفاوت بر اساس استاندارد DECT  و 11,802 است .دستگاه‌هاي SWAP در هر ثانيه hop 50 ايجاد و در هر ثانيه قادر به ارسال يک مگابيت در ثانيه   مي باشند. در برخي از مدل ها ميزان ارسال اطلاعات تا دو مگابيت در ثانيه هم  مي رسد.  توانائي فوق ارتباط مستقيم به تعداد اينترفيس هاي موجود در مجيط عملياتي دارد. مزاياي SWAPعبارتند از:

* قيمت مناسب

* نصب آسان

* به کابل هاي اضافه نياز نخواهد بود

* داراي Access point نيست

* داراي شش کانال صوتي دو طرفه و يک کانال داده است

* امکان استفاده از ١٢٧ دستگاه در هر شبکه وجود دارد.

*امکان داشتن چندين شبکه در يک محل را فراهم مي نمايد.

*امکان رمزنگاري اطلاعات به منظور ايمن سازي داده ها وجود دارد.

برخي از اشکالات  SWAP عبارتند از:

* داراي سرعت بالا نيست (در حالت عادي يک مگابيت در ثانيه)

*داراي دامنه محدودي است ( ٧٥ تا ١٢٥ فوت / ٢٣ تا ٣٨ متر)

* با دستگاههاي FHSS سازگار نيست.

*دستگاههاي داراي فلز و يا وجود ديوار مي تواند باعث افت ارتباطات شود.

* استفاده در شبکه هاي کابلي مشکل است.

تراتسيور بدون کابل واقعي بهمراه يک آنتن کوچک در يک کارت  PCI , ISA و يا PCMCIA ايجاد       ( ساخته ) مي گردد.  در صورتي که از يک کامپيوتر Laptopاستفاده مي شود، کارت PCMCIA بصورت مستقيم به يکي از اسلات هاي PCMCIAمتصل خواهد شد. در کامپيوترهاي شخصي، مي بايست از يک کارت اختصاصي ISA ،کارت HomeRF PCI و يا يک کارت PCMCIAبه همراه يک آداپتور مخصوص، استفاده کرد. با توجه به ضرورت استفاده از کارت هاي اختصاصي، صرفا” کامپيوترها را مي توان در يک شبکه SWAPاستفاده کرد. چاپگرها و ساير وسائل جانبي مي بايست مستقيما” به يک کامپيوتر متصل و توسط کامپيوتر مورد نظر به عنوان يک منبع اشتراکي مورداستفاده قرار گيرند.

اکثر شبکه هاي SWAP بصورت “نظير به نظير” مي باشند. برخي از توليدکنندگان اخيرا” به منظور افزايش دامنه تاثير پذيري در شبکه هاي بدون کابل     Access pointهائي را به بازار عرضه نموده اند. شبکه هاي HomeRfنسبت به ساير شبکه هاي بدون کابل، داراي قيمت مناسب تري مي باشند.

* WECA و Wi-Fi

WECA (Alliance Compatibility Wireless Ethernet) رويکرد جديدي را نسبت به HomeRF ارائه نموده است . Wi-Fi، استانداردي است که به تمام توليدکنندگان براي توليد محصولات مبتي بر استاندارد IEEE11,802تاکيد مي نمايد. مشخصات فوق FHSS را حذف و تاکيد بر استفاده از DSSS دارد . ( بدليل ظرفيت بالا در نرخ انتقال اطلاعات) بر اساس IEEE 802.11b ، هر دستگاه قادر به برقراري ارتباط با سرعت يازده مگابيت در ثانيه است. در صورتي که سرعت فوق پاسخگو نباشد بتدريج سرعت به5/5 مگابيت در ثانيه ، دو مگابيت در ثانيه و نهايتا” به يک مگابيت در ثانيه تنزل پيدا خواهد کرد. بدين ترتيب شبکه از صلابت و اعتماد بيشتري برخوردارخواهد بود.

مزاياي Wi-Fiعبارتند از :

* سرعت بالا (يازده مگابيت در ثانيه)

* قابل اعتماد

* داراي دامنه بالائي مي باشند ( 000,1 فوت يا ٣٠٥ متر در قضاي باز و ٢٥٠ تا ٤٠٠ فوت / ٧٦ تا ١٢٢ متر در فضاي بسته)

* با شبکه هاي کابلي بسادگي ترکيب مي گردد.

* با دستگاههاي DSSS 802.11 (اوليه ) سازگار است.

برخي از اشکالات  Wi-Fiعبارتند از:

* گران قيمت مي باشند.

* پيکربندي و تنظيمات آن مشکل است.

* نوسانات سرعت زياد است.

Wi-Fi سرعت شبکه هاي اترنت را بدون استفاده از کابل در اختيار قرار مي دهد. کارت هاي سازگار با  Wi-Fi به منظور استفاده در شبکه هاي ” نظير به نظير ” وجود دارد، ولي معمولا Wi-Fi به Access point  نياز خواهد داشت. اغلب Access Point داراي يک اينترفيس به منظور اتصال به يک شبکه کابلي اترنت نيز مي باشند. اکثر ترانسيورهاي  Wi-Fi بصورت کارت هاي PCMCIA عرضه شده اند. برخي از توليدکنندگان کارت هايPCI  و يا ISA را نيز عرضه نموده اند.

با گسترش شهرها و بوجود آمدن فاصله هاي جغرافيايي بين مراكز سازمان ها و شركت ها و عدم رشد امكانات مخابراتي با رشد نياز ارتباطي داخل كشور ، يافتن راه حل و جايگزين مناسب جهت پياده سازي اين ارتباط شديدا احساس مي شود كه در اين زمينه سيستم هاي مبتني بر تكنولوژي بي سيم انتخاب مناسبي مي باشد .

 

3-2- تقسیم بندی شبکه های بی سیم از لحاظ بعد جغرافیایی :

با گسترش شهرها و بوجود آمدن فاصله هاي جغرافيايي بين مراكز سازمان ها و شركت ها و عدم رشد امكانات مخابراتي با رشد نياز ارتباطي داخل كشور ، يافتن راه حل و جايگزين مناسب جهت پياده سازي اين ارتباط شديدا احساس مي شود كه در اين زمينه سيستم هاي مبتني بر تكنولوژي بي سيم انتخاب مناسبي مي باشد.
PAN يا Personal Arean Network  :

سيستم هاي بي سيم كه داراي برد و قدرت انتقال پايين هستند را شامل مي شود كه اين ارتباط غالبا بين افراد برقرار مي شود. نمونه اين تكنولوژي در سيستم ها Infrared براي ارتباط نقطه به نقطه دو شخص و يا Bluethooth براي ارتباط يك نقطه به چند نقطه جهت ارتباط يك شخص به چند شخص مي باشد. استاندارد مورد استفاده در اين محدوده كاربرد IEEE 802.15 مي باشد.

LAN يا Local Area Netwok  :

در اين دسته بندي سيستم هاي بي سيم از استاندارد IEEE 802.11 استفاده مي كنند. اين محدوده كاربري معادل محدوده شبكه هاي LAN باسيم بوده كه برپايه تكنولوي بي سيم ايجاد شده است.

MAN يا Metropolitan Area Netwok  :

سيستم هاي بي سيم از استاندارد IEEE 802.16 استفاده مي كنند. محدوده پوشش فراتر از محدوده LAN بوده و قالبا چندين LAN را شامل مي شود. سيستم هاي WIMAX اوليه مبتني بر اين استاندارد هستند.

 

WAN يا Wide Area Netwok  :

سيستم هاي بي سيم مبتني بر استاندارد IEEE 802.16e هستند كه به IEEE 802.20 نيز شهرت يافته اند. سيستم هاي WIMAX در ابعاد كلان و بدون محدوديت حركتي در اين محدوده كار مي كنند.

4-2-  شبکه های موردی بی سیم (Wireless Ad Hoc Networks)

یک شبکه موردی بی‌سیم یک شبکه بی‌سیم غیر‌متمرکز است. این شبکه شامل مجموعه‌ای از گره‌ های توزیع‌شده است که بدون هیچ زیر‌ساخت یا مدیریت مرکزی، یک شبکه موقت را تشکیل می‌دهند. در این شبکه‌ها، هیچ زیرساختی مثل مسیریاب یا نقطه دسترسی وجود ندارد، بلکه گره‌ها به طور مستقیم با هم ارتباط برقرار می‌کنند و هر گره از طریق ارسال داده‌ها برای سایر گره‌ها در مسیریابی شرکت می‌کند. در شبکه‌های موردی، گره‌ها می‌توانند هم به عنوان مسیریاب و هم به عنوان میزبان عمل کنند. شبکه موردی به دستگاه‌ها این امکان را می دهد که در هر زمان و در هر مکان بدون نیاز به یک زیر‌ساخت مرکزی با یکدیگر ارتباط برقرار کنند.

اولین شبکه‌های موردی بی‌سیم، شبکه‌های رادیویی بسته (PRNETS) بودند که توسط سازمان DARPA در دهه 1970 ایجاد شدند. شبکه‌های موردی به دلایل نظامی به وجود آمدند اما امروزه در صنعت و بسیاری از مقاصد غیر‌نظامی استفاده می‌شوند.

به دلیل تحرک گره‌ها، توپولوژی شبکه پویا و متغیر می‌باشد. بنابراین، با توجه به این که گره‌ها می توانند به طور پیوسته موقعیت خود را تغییر دهند، به یک پروتکل مسیریابی که توانایی سازگاری با این تغییرات را داشته باشد، نیاز دارد. در یک شبکه موردی، گره‌ها از طریق لینک‌های بی‌سیم به هم متصل شده‌اند. از آنجایی که لینک‌ها می‌توانند در هر زمان متصل یا منفصل شوند، یک شبکه باید قادر باشد خود را با ساختار جدید تطبیق دهد. یک مسیر دنباله‌ای از لینک‌ها است که دو گره را به هم متصل می‌کند.

برخلاف شبکه‌های زیر‌ساخت، در شبکه‌های موردی، مسیریابی به صورت چند‌گامی است. در شبکه‌های زیرساخت، کاربر تنها در یک گام با ایستگاه مرکزی ارتباط برقرار می‌کند و ایستگاه مرکزی، پیام مربوطه را به کاربر دیگر می‌رساند. اما در شبکه‌های موردی، یک کاربر از طریق چند گام با کاربر دیگر ارتباط برقرار می‌کند. گام‌ها گره‌های میانی هستند که وظیفه‌شان تقویت و ارسال پیام‌ها از مبدا به مقصد است. گره‌هایی که در حوزه ارتباطی یکدیگر قرار دارند، مستقیما از طریق لینک‌های بی سیم با هم ارتباط برقرار می کنند و گره‌هایی که از هم دورند، پیامشان از طریق گره‌های میانی تقویت و ارسال می شود تا به گره مقصد برسد.

این شبکه‌ها قادر به خود‌پیکربندی هستند. به طوری که اگر یکی از گره‌های میانی با مشکل مواجه شود، شبکه به طور خودکار مجددا خود را پیکربندی کرده و یک مسیر جایگزین را از مبدا به مقصد تعیین می‌کند. به منظور پیکربندی شبکه، ابتدا هر گره، گره‌هایی که برای ارتباط در دسترس هستند را شناسایی می‌کند. سپس هر گره اطلاعات بدست آمده را به همراه مقصد مورد نظر، برای سایر گره‌ها ارسال می کند. الگوریتم پیکربندی شبکه با استفاده از لیستی از اتصالات موجود، یک مسیریابی منحصر‌بفرد را برای ارتباط هر کاربر با مقصدش بر می‌گزیند. با گذشت زمان، شبکه تغییر می‌کند. کاربران ممکن است بیایند و بروند، گره‌ها ممکن است جابجا شوند یا تغییر در محیط الکترومغناطیس ممکن است انتشار بین گره‌ها را دچار تغییر کند. هنگامی که این تغییرات رخ می‌دهند، شبکه پیکربندی خود را به‌روز رسانی می‌کند و مسیرهای جدیدی را از کاربران به مقاصدشان شناسایی می‌کند. این پیکربندی مجدد، در طی تغییرات شبکه بارها و بارها تکرار می شود. به این ترتیب شبکه‌های موردی قادر به خود‌ترمیمی می باشند که این قابلیت از طریق خود‌پیکربندی مداوم شبکه فراهم می‌شود.

مزایای اصلی یک شبکه موردی شامل موارد زیر است:

  1. خود‌مختار است. (مستقل از مدیریت مرکزی شبکه است و به زیر‌ساخت نیاز ندارد.)
  2. سرعت توسعه آن زیاد است.
  3. مقرون به صرفه است. (به سادگی و با صرف هزینه پایین قابل پیاده‌سازی است.)
  4. قادر به خود‌پیکربندی است.
  5. قادر به خود‌ترمیمی است.
  6. مقیاس‌پذیر است. (خود را با اضافه شدن گره‌های بیشتر تطبیق می‌دهد.)
  7. انعطاف‌پذیر است. (به عنوان مثال، دسترسی به اینترنت از نقاط مختلف موجود در محدوده تحت پوشش شبکه امکان پذیر است.)

بعضی از محدودیت‌های شبکه‌ موردی به شرح زیر است:

  1. هر گره باید دارای کارایی کامل باشد.
  2. به دلیل استفاده از لینک‌های بی‌سیم، دارای پهنای باند محدود است.
  3. برای قابلیت‌اطمینان به تعداد کافی از گره‌های در دسترس نیاز دارد. در نتیجه شبکه‌های پراکنده می‌توانند مشکلاتی را به همراه داشته باشند.
  4. در شبکه‌های بزرگ ممکن است تاخیر زمانی زیادی داشته باشد.
  5. دارای انرژی محدود است. چون گره‌ها، انرژی خود را از باتری‌ها بدست می‌آورند.
  6. امنیت فیزیکی آن محدود است.

 

بعضی از چالش‌های امنیتی در شبکه‌های موردی شامل موارد زیر است:

  1. نبود زیر‌ساخت یا کنترل مرکزی، مدیریت شبکه را مشکل می‌کند.
  2. به دلیل توپولوژی پویای شبکه، نیازمند مسیریابی پیشرفته و امن است.
  3. با توجه به امکان عدم همکاری گره‌ها، مکانیزم‌های مسیریابی آسیب‌پذیر می‌باشند.
  4. از آنجایی که ارتباطات از طریق امواج رادیویی هستند، جلوگیری از استراق‌سمع مشکل است.

شبکه‌های موردی معمولا در مواقعی که نیاز به پیاده‌سازی سریع یک شبکه ارتباطی است و زیر‌ساختی در دسترس نبوده و ایجاد و احداث زیر‌ساخت نیز مقرون به صرفه نباشد، کاربرد دارند. از جمله این کاربرد‌ها می‌توان به موارد زیر اشاره کرد:

  1. کاربرد‌های نظامی در میدان جنگ
  2. امداد‌رسانی به حادثه‌دیدگان در بلایای طبیعی
  3. به اشتراک‌گذاری داده‌ها توسط شرکت‌کنندگان در یک کنفرانس

5-2-  انواع شبکه‌های موردی بی‌سیم عبارتند از:

  1. شبکه‌های موردی سیار (MANET)
  2. شبکه‌های حسگر بی‌سیم (WSN)
  3. شبکه‌های توری بی‌سیم (WMN)

یک شبکه موردی سیار (MANET)، یک شبکه بدون زیر‌ساخت و دارای قابلیت خود‌پیکربندی است که از دستگاه‌های متحرکی که از طریق لینک‌های بی‌سیم به هم متصل شده‌اند، تشکیل شده است. هر دستگاه موجود در یک MANET آزاد است که به طور مستقل در هر جهتی حرکت کند و در نتیجه لینک‌های آن به سایر دستگاه‌ها مکررا تغییر می کنند. دستگاه‌ها شامل مسیریاب‌ها و میزبان‌های متحرک می باشند که یک گراف دلخواه را تشکیل می‌دهند. شبکه‌های MANET ممکن است به صورت مستقل عمل کنند یا به شبکه دیگری مثل اینترنت متصل باشند.

شبکه موردی وسایل نقلیه (VANET)، نوعی MANET است که برای ارتباط میان وسایل نقلیه و همچنین ارتباط بین وسایل نقلیه و تجهیزات کنار جاده ای بکار می‌رود.

شبکه ی Mobile ad hoc (MANET) : MANET  مجموعه ای است از node های موبایل یا متحرک مجهز به گیرنده و فرستنده به منظور برقراری ارتباطات بی سیم Node ها ی موبایل به دلیل وجود محدودیت هایی در فرستنده و گیرنده های خود نمی توانند با تمام node ها ارتباط مستقیم برقرار کنند. به همین دلیل لازم است در مواردی که امکان برقراری چنین ارتباط مستقیمی وجود ندارد داده ها از طریق بقیه ی node ها که در این حالت نقش مسیر یاب را ایفا می کنند منتقل شوند.با این حال متحرک بودن node ها باعث شده شبکه مدام در حال تغییر بوده و مسیر های مختلفی بین دو node به وجود آید. عوامل دیگری همچون Multi hopping  اندازه ی بزرگ شبکه , و نا همگونی انواع host ها و تنوع نوع و ساختار آنها و محدودیت توان باتری ها طراحی پروتوکل های مسیر یابی مناسب را به یک مشکل جدی بدل کرده است.برای این منظور بایستی از پروتوکل های مناسب و امنی استفاده شود که در ادامه به آنها خواهیم پرداخت.

همچنین node ها هیچ دانش پیشینی نسبت به توپولوژی شبکه ای که در محدوده ی آنها بر قرار است ندارند و بایستی از طریقی پی به آن ببرند.روش رایج این است که یک node جدید بایستی حضور خود را اعلام کرده و به اطلاعات broad cast شده از همسایگان خود گوش فرا دهد تا بدین ترتیب اطلاعاتی در مورد node های اطراف و نحوه ی دسترسی به آنها به دست آورد.

دیگر مسائل , مشکلات و محدودیت های موجود در این شبکه ها

  1. خطاهای ناشی از انتقال و در نتیجه packet loss فراوان.
  2. حضور لینکهای با ظرفیت متغیر.
  3. قطع و وصل شدن های زیاد و مداوم
  4. پهنای باند محدود.
  5. طبیعت broad cast ارتباطات.
  6. مسیر ها و توپولوژی های متغیر و پویا
  7. طول کم شارژ باتری ابزار متحرک
  8. ظرفیت ها و قابلیت های محدود node ها.
  9. نیاز به application های جدید ( لایه ی Application )
  10. کنترل میزان تراکم و جریان داده ها ( لایه ی Transport )
  11. روش های آدرس دهی و مسیر یابی جدید( لایه ی Network )
  12. تغییر در وسایل و ابزار آلات اتصالی ( لایه ی Link )
  13. خطاهای انتقال ( لایه ی Physical )

6-2- پروتكل هاي رايج در شبكه هاي بي سيم :

802.11

1Mbps , 2.4 GHZ

802.11 a

5.8 GHZ Frequence

54 Mbps

802.11b
2.4 GHZ Frequence

11 Mbps

802.11g

2.4 MHZ Frequence

54 Mbps

802.11a+g
2.4 & 5.8 GHZ Frequence

54 Mbps

7-2- قوانين ومحدوديت ها :

به منظور در دسترس قرار گرفتن امكانات شبكه هاي بي سيم براي عموم مردم و همچنين عدم تداخل امواج شرايط محدود كننده اي براي افراد توسط كميته FCC تعيين شد كه مهمترين آن ها اين است كه تجهيزات شبكه هاي بي سيم در باند فركانسي 2.4 Ghz مجاز به داشتن حداكثر 10mw توان خروجي با زاويه پوشش آنتن 9 درجه هستند كه توان خروجي براي باند فركانسي 5.8 Ghz تا 200 mw مجاز اعلام شده است.

 

8-2- روش هاي ارتباطي بي سيم :

تجهيزات و شبكه هاي كامپيوتري بي سيم بر دو قسم Indoor يا درون سازماني و Outdoor يا برون سازماني توليد شده و مورد استفاده قرار مي گيرند.

شبكه هاي بي سيم Indoor :

نياز سازمان ها و شركت ها براي داشتن شبكه اي مطمئن و وجود محدوديت در كابل كشي ، متخصصين را تشويق به پيدا كردن جايگزين براي شبكه كامپيوتري كرده است. شبكه هاي Indoor به شبكه هايي اتلاق مي شود كه در داخل ساختمان ايجاد شده باشد. اين شبكه ها بر دو گونه طراحي مي شوند. شبكه هاي Ad hoc و شبكه هاي Infra Structure. در شبكه هاي Ad hoc دستگاه متمركز كننده مركزي وجود ندارد و كامپيوترهاي داراي كارت شبكه بي سيم هستند. استراتژي Ad hoc براي شبكه هاي كوچك با تعداد ايستگاه كاري محدود قابل استفاده است. روش و استراتژي دوم جهت پياده سازي استاندارد شبكه بي سيم ، شبكه Infra Structure مي باشد. در اين روش يك يا چند دستگاه متمركز كننده به نام Access Point مسؤوليت برقراري ارتباط را برعهده دارد.

شبكه هاي بي سيم Outdoor  :

برقراري ارتباط بي سيم در خارج ساختمان به شبكه بي سيم Outdoor شهرت دارد. در اين روش داشتن ديد مستقيم يا Line Of Sight ، ارتفاء دو نقطه و فاصله، معيارهايي براي انتخاب نوع Access Point و آنتن هستند.
انواع ارتباط :

شبكه بي سيم Outdoor با سه توپولوژي Point To Point ، Point To Multipoint و Mesh قابل پياده سازي مي باشد .

Point To point  :

در اين روش ارتباط دو نقطه مدنظر مي باشد. در هر يك از قسمت ها آنتن و AccessPoint نصب شده و ارتباط اين دو قسمت برقرار مي شود .

Point To Multi Poin  :

در اين روش يك نقطه به عنوان مركز شبكه درنظر گرفته مي شود و ساير نقاط به اين نقطه در ارتباط هستند. Mesh  :

ارتباط بي سيم چندين نقطه بصورت هاي مختلف را توپولوژي Mesh مي گويند. در اين روش ممكن است چندين نقطه مركزي وجود داشته باشد كه با يكديگر در ارتباط هستند.

ارتباط بي سيم بين دو نقطه به عوامل زير بستگي دارد :

  • توان خروجي Access Point ( ارسال اطلاعات
  • ( ميزان حساسيت Access Point(دريافت اطلاعات
  • توان آنتن

1-توان خروجي Access Point :

يكي از مشخصه هاي طراحي سيستم هاي ارتباطي بي سيم توان خروجي Access Point مي باشد. هرچقدر اين توان بيشتر باشد قدرت سيگنال هاي توايدي و برد آن افزايش مي يابد.

2-ميزان حساسيت Access Point :

از مشخصه هاي تعيين كننده در كيفيت دريافت امواج توليد شده توسط Access Point نقطه مقابل ميزان حساسيت Access Point مي باشد. هرچقدر اين حساسيت افزايش يابد احتمال عدم دريافت سيگنال كمتر مي باشد و آن تضمين كننده ارتباط مطمئن و مؤثر خواهد بود.

3-توان آنتن :

در مورد هر آنتن توان خروجي آنتن و زاويه پوشش يا انتشار مشخصه هاي حائز اهميت مي باشند در اين راستا آنتن هاي مختلفي با مشخصه هاي مختلف توان و زاويه انتشار بوجود آمده است كه آنتن هاي Omni ، Sectoral ، Parabolic ، Panel ، Solied و . . . . مثال هايي از آن هستند.

 

ادامه مطلب

معرفی Cisco IOS

معرفی Cisco IOS

معرفی Cisco IOS

معرفی Cisco IOS

 

ایــن فــصل شــامل معرفــی Device هــای سيــسکو چــون روتــر و ســوئيچ و سيــستم عامــل مخــتص بــه سيــسکو IOS Cisco و نحوه ارتباط و پيکربندی اوليه هر کدام از آنها می باشد . در انتهای ایـن فـصل مـی آموزیـد کـه چگونـه بـا Device هایی چون router و switch ارتباط برقرار کرده و آنها را جهت استفاده در یک شبکه پيکربندی کنيد .

(IOS (System operating Internetwork هسته مرکزی روتر و بيـشتر سـوئيچ هـای سيـسکو چـون سـوئيچ 2950 مـی باشد . در واقع سيستم عامل روترهای سيسکو همانند دیگر سيستم عامل ها وظيفه ذخيره و بازیابی فایـل ، مـدیریت حافظه و مدیریت سرویس های مختلف را به عهده دارد . این سيستم عامل فاقد محيط گرافيکی بوده و مبتنی بـر خـط فرمان می باشد لذا دارای یک واسط کاربری UI می باشد که به کمـک آن دسترسـی بـه فـرامين و پيکربنـدی تجهيـزات سيسکو امکان پذیر می باشد. IOS در دو mode پيکربندی می شود ، mode up set و دیگری CLI . :Set UP Mode هنگامی که روتر و یا بعضی از سوئيچ های سيسکو مثل سوئيچ 2950 را برای بـار نخـست راه انـدازی مـی کنيـد وارد mode up set شده و می توانيد تنظيمات اوليه چون آدرس دهی و تنظيم پسوردها را انجـام دهيـد . درواقـع یـک سـری سوالات به صورت متوالی از شما پرسيده می شود و می توانيد با پاسخ دادن به هـر کـدام از آنهـا تنظيمـات اوليـه را در همين ابتدای کار انجام دهيد . البته این تنظيمات کامل نخواهند بود و برای تنظيم بيشتر می بایست به Mode دیگری مراجعه کرد . همچنين می توانيد به جای پاسخ دادن به این سوالات مستقيما وارد Mode Setup شوید و در هنگام نياز این تنظيمات را انجام دهيد . :(Common Line Interface) CLI (CLI (interface line-Command IOS Cisco جایگـاهی اسـت کـه مـی توانيـد تنظيمـات بيـشتری را روی روتـر و سـوئيچ انجام دهيد. CLI یک محيط Base text می باشد به طوری که user در این محيط فرامين مورد نظرش را type می کند. برای دسترسی به این محيط سه روش وجود دارد که در ادامه با این سه روش آشنا می شوید.

 

 

 

ادامه مطلب

مدل چهار لایه ای TCP/IP

مدل چهار لایه ای TCP/IP

مدل چهار لایه ای TCP/IP

مدل چهار لایه ای TCP/IP

مدل چهار لایه ای TCP/IP: مدل TCP/IP زاده جنگ سرد در دهه شصت بود . در اواخر دهه ی شصت ، آژانس پروژه های پیشرفته ی تحقیقاتی دولت ایالات متحده ( Advanced Research Project Agency)ARPA با بودجه ی دولتی ، تصمیم به پیاده سازی یک شبکه ی WAN در نه ایالت آمریکا گرفت . این شبکه صرفاً اهداف نظامی را دنبال می کرد و در عرض دو سال پیاده سازی و نصب شد . برای اولین بار روش سوئیچ بسته در این شبکه معرفی شد و موفقیت این شبکه مراکز تحقیقاتی مختلف را بر آن داشت تا شروع به کار مشترک برای توسعه ی تکنولوژی شبکه نمایند . کمیته ی ARPA که به

( Internet Control and Configuration Board ) ICCB مشهور شد روز به روز شهرت یافت و رشد کرد . این کمیته با همکاری بقیه ی آژانسهای تحقیقاتی ، کار مشترک تبدیل تکنولوژی ARPA به یک پروتکل شبکه ای استاندارد به نام ( Transport Control Protocol / Internet Protocol ) TCP/IP را شروع کردند . در اوایل دهه ی هشتاد محیطهای دانشگاهی نیز از TCP/IP حمایت کردند . دانشگاه برکلی در کالیفرنیا در نسخه ی یونیکس خود که رایگان بود ، پروتکل TCP/IP را پیاده سازی و ارائه کرد . رایگان بودن این سیستم عامل بسیار قدرتمند باعث شد تا دانشکده های علوم کامپیوتری به سرعت با TCP/IP آشنا شده و ضمن پیاده سازی شبکه های مبتنی بر آن ، از این مدل حمایت نمایند . شاید بزرگترین عامل توسعه و رشد TCP/IP همین کار دانشگاه برکلی در ارائه رایگان TCP/IP بر روی یونیکس بود .

در سال 1983 کمیته ICCB بعنوان گروه طراحی اینترنت یا ( Internet Architecture Board ) IAB به جهان معرفی شد . این کمیته یک سازمان مستقل برای طراحی استانداردها و ترویج تحقیقات در زمینه ی تکنولوژی اینترنت است . کمیته ی IAB  اکنون نیز وجود دارد و در دو قسمت فعالیت می کند :

  • گروه ( Internet Engineering Task Force ) IETF : موارد فنی و مشکلات استانداردها و تکنولوژی بکار گرفته شده در شبکه ی اینترنت را بررسی و حل می کند و جزییات پروتکلهای فعلی را در اختیار عموم قرار می دهد .
  • گروه ( Internet Research Task Force ) IRTF : کار تحقیقاتی به منظور بهبود و ارتقاء اینترنت را بر عهده دارد .

موفقیت IAB در اواسط دهه ی هشتاد سرمایه ها را به سمت شبکه سوق داد . سازمان ملی علوم آمریکا تصمیم به سرمایه گذاری برای راه اندازی یک ستون فقرات در آمریکا گرفت که NSFNET نامیده شد . با پیاده سازی موفق این ستون فقرات ، اینترنت باز هم رشد کرد و باز هم سرمایه ها را به سمت خود کشید و مرزهای آمریکا را در نوردید و به یک پدیده ی جهانی تبدیل شد .

مدیریت روزانه و پشتیبانی فنی شبکه ی اینترنت ، توسط مرکزی در آمریکا به نام
( Internet Network Information Center )INERNIC انجام می شود . این مرکز مدیریت سطح بالای شبکه ، ثبت اسامی نمادین در اینترنت و ثبت کلاسهای آدرس یکتا را برعهده دارد .

امروزه TCP/IP به عنوان محبوبترین پروتکل شبکه در تمام سیستمهای عامل حمایت می شود و با تمام نقایصی که دارد حتی در پیاده سازی اینترانتهایی که حتی به اینترنت متصل نیستند ، مورد استفاده قرار می گیرد .

مولفه های TCP/IP

عاملی که تمامی شبکه های مختلف دنیا را به صورت موفقیت آمیز به هم پیوند زده است ، تبعیت همه ی آنها از مجوعه پروتکلی است که تحت عنوان TCP/IP در دنیا شناخته می شود . دقت کنید که عبارت خلاصه شده ی TCP/IP می تواند به دو موضوع متفاوت اشاره داشته باشد :

  • مدل ( TCP/IP Model ) TCP/IP : این مدل یک ساختار چهار لایه ای برای ارتباطات گسترده تعریف می نماید که آنرا در ادامه تشریح خواهیم کرد .
  • پشته ی پروتکلهای ( TCP/IP Protocol Stack ) TCP/IP : پشته ی TCP/IP مجموعه ای شامل بیش از صد پروتکل متفاوت است که برای سازماندهی کلیه اجزاء شبکه ی اینترنت به کار می رود .

مدل TCP/IP

همانگونه که اشاره شد این مدل یک ساختار چهار لایه ای برای شبکه عرضه کرده است . اگر بخواهیم این مدل چهار لایه ای را با مدل هفت گانه OSI مقایسه کنیم ، لایه ی اول از مدل TCP/IP یعنی لایه ی دسترسی به شبکه تلفیقی از وظایف لایه ی فزیکی و لایه ی پیوند داده ها از مدل OSI خواهد بود . لایه ی دوم از این مدل معادل لایه ی سوم از مدل OSI یعنی لایه ی شبکه است . لایه سوم از مدل TCP/IP همنام و معادل لایه چهارم از مدل OSI یعنی لایه ی انتقال خواهد بود .

لایه های پنجم و ششم از مدل OSI در مدل TCP/IP وجود ندارد و وظایف آنها در صورت لزوم در لایه ی چهارم از مدل TCP/IP ادغام شده است .

لایه ی هفتم از مدل OSI معادل بخشی از لایه چهارم از مدل TCP/IP است .

بررسی اجمالی لایه های مدل TCP/IP

لایه ی اول : لایه ی واسط شبکه

در این لایه استانداردهای سخت افزار ، و نرم افزارهای راه انداز ( Device Driver ) و پروتکلهای شبکه تعریف می شود . این لایه درگیر با مسائل فزیکی ، الکتریکی و مخابراتی کانال انتقال ، نوع کارت شبکه و راه اندازهای لازم برای نصب کارت شبکه می باشد . در شبکه ی اینترنت که می تواند مجموعه ای از عناصر غیر همگن و نامشابه را به هم پیوند بزند انعطاف لازم در این لایه برای شبکه های گوناگون و ماشینهای میزبان فراهم شده است . یعنی الزام ویژه ای در بکارگیری سخت افزار و نرم افزار ارتباطی خاص ، در این لایه وجود ندارد . ایستگاهی که تصمیم دارد به اینترنت متصل شود بایستی با استفاده از پروتکلهای متعدد و معتبر و نرم افزار راه انداز مناسب ، به نحوی داده های خودش را به شبکه تزریق کند . بنابراین اصرار و اجبار خاصی در استفاده از یک استاندارد خاص در این لایه وجود ندارد .

لایه ی دوم : لایه ی شبکه

این لایه در ساده ترین عبارت وظیفه دارد بسته های اطلاعاتی را که از این به بعد آنها را بسته های IP می نامیم ، روی شبکه هدایت کرده و از مبداء تا مقصد به پیش ببرد . در این لایه چندین پروتکل در کنار هم وظیفه ی مسیریابی و تحویل بسته های اطلاعاتی از مبداء تا مقصد را انجام می دهند . کلیدی ترین پروتکل در این لایه ، پروتکل IP نام دارد . برخی از پروتکل های مهم که یک سری وظایف جانبی بر عهده دارند عبارتند از : IGMP – BOOTP – ARP – RARP – RIP – ICMP  و …  .

همانگونه که اشاره شد در این لایه یک واحد اطلاعاتی که بایستی تحویل مقصد شود ، دیتاگرام نامیده می شود . پروتکل IP می تواند یک دیتاگرام را در قالب بسته های کوچکتری قطعه قطعه کرده و پس از اضافه کردن اطلاعات لازم برای بازسازی ، آنها را روی شبکه ارسال کند .

لازم است بدانید که در این لایه برقرای ارتباط بین مبداء و مقصد به روش بدون اتصال  خواهد بود و ارسال یک بسته ی IP روی شبکه ، عبور از مسیر خاصی را تضمین نمی کند . یعنی اگر دو بسته متوالی برای یک مقصد یکسان ارسال شود هیچ تضمینی در به ترتیب رسیدن آنها وجود ندارد ، چون این دو بسته می توانند از مسیرهای متفاوتی به سمت مقصد حرکت نمایند . در ضمن در این لایه پس از آنکه بسته ای روی یکی از کانالهای ارتباطی هدایت شد ، از سالم رسیدن یا نرسیدن آن به مقصد هیچ اطلاعی بدست نخواهد آمد ، چرا که در این لایه ، برای بسته های IP هیچ گونه پیغام دریافت یا عدم دریافت بین عناصر واقع بر روی مسیر ، رد و بدل نمی شود ؛ بنابراین سرویسی که در این لایه ارائه می شود نامطمئن است و اگر به سرویسهای مطمئن و یا اتصال گرا نیاز باشد در لایه بالاتر این نیاز تامین خواهد شد .

در این لایه مسیریابها بایستی از شرایط توپولوژیکی و ترافیکی شبکه اطلاعاتی را کسب نمایند تا مسیریابی به روش پویا انجام شود . همچنین در این لایه باید اطلاعاتی درباره مشکلات یا خطاهای احتمالی در ساختار زیر شبکه بین مسیریابها و ماشینهای میزبان ، مبادله شود . یکی دیگر از وظایف این لایه ویژگی ارسال چندبخشی ( Multicast ) است یعنی یک ایستگاه قادر باشد به چندین مقصد گوناگون که در قالب یک گروه سازماندهی شده اند ، بسته یا بسته هایی را ارسال نماید .

لایه ی سوم : لایه انتقال

این لایه ارتباط ماشینهای انتهایی ( ماشینهای میزبان ) را در شبکه برقرار می کند ، یعنی می تواند بر اساس  سرویسی که لایه دوم ارائه می کند یک ارتباط اتصال گرا و مطمئن ( Reliable ) ، برقرار کند . البته در این لایه برای عملیاتی نظیر ارسال صوت و تصویر که سرعت ، مهمتر از دقت و خطا است سرویسهای بدون اتصال سریع و نامطمئن نیز فراهم شده است .

در سرویس مطمئنی که در این لایه ارائه می شود ، مکانیزمی اتخاذ شده است که فرستنده از رسیدن و یا عدم رسید صحیح بسته به مقصد با خبر شود .

این لایه از یک طرف با لایه ی شبکه و از طرف دیگر با لایه ی کاربرد در ارتباط است . داده های تحویلی به این لایه توسط برنامه ی کاربردی و با صدا زدن توابع سیستمی تعریف شده در واسط برنامه های کاربردی  – (Application Programming Interface ) API- ارسال و دریافت می شوند .

لایه ی چهارم : لایه ی کاربرد

در این لایه بر اساس خدمات لایه های زیرین ، سرویس سطح بالایی برای خلق برنامه های کاربردی ویژه و پیچیده ارائه می شود . این خدمات در قالب ، پروتکلهای استانداردی همانند موارد زیر به کاربر ارائه می شود :

  • شبیه سازی ترمینال ( TELNET / Terminal Emulation )
  • انتقال فایل یا( File Transfer Protocol ) FTP
  • مدیریت پست الکترونیکی
  • خدمات انتقال صفحات ابرمتنی

 

 

 

 

ادامه مطلب

لایه Physical در شبکه

لایه Physical در شبکه

لایه Physical در شبکه

لایه Physical در شبکه

در این لایه اطلاعات دریافتی از لایه های بالاتر تبدیل به یک سری بيتهای ٠ و ١ شده و جهت انتقال برروی بستر ارتباطی ، تبدیل به سيگنال الکتریکی و یا موج نوری خواهند شد . در این لایه هيچ پردازشی بر اطلاعات ارسالی و یا دریافتی صورت نمی گيرد . نکاتی که در این لایه مورد اهميت می باشد نوع بستر ارتباطی و پهنای باند مربوط به آن و نرخ ارسال اطلاعات و نوع مدولاسيون مورد اهميت می باشد . کارت شبکه به عنوان یک واسط ارتباطی در این لایه ، اطلاعات دریافتی از لایه بالاتر را دریافت و پس از تبدیل به بيتهای صفر و یک ، تحویل بستر ارتباطی می دهد .

 

 

 

 

 

ادامه مطلب

لایه Data Link در شبکه

لایه Data Link در شبکه

لایه Data Link در شبکه

لایه Data Link در شبکه

این لایه وظيفه مدیریت منابع سخت افزاری موجود در شبکه های LAN را به عهده دارد. در یک شبکه LAN از آنجایی که منابع سخت افزاری در یک بستر ارتباطی مشترک به تبادل اطلاعات می پردازند ، نياز به تعریف یکسری استانداردها برای جلوگيری از تصادم و از بين رفتن داده وجود دارد . تعریف این استاندارد ها در لایه دوم از مدل هفت لایه ای OSI صورت می گيرد . اطلاعات دریافتی از لایه بالاتر در بسته هایی به نام فریم بسته بندی می شود و آدرس دهی هر فریم براساس آدرس سخت افزاری ( Address MAC ( خواهد بود . یکی از سخت افزارهایی که وظيفه مدیریت منابع سخت افزاری و ارتباط هر یک از آنها را براساس لایه دوم به عهده دارد سوئيچ می باشد . در ادامه این کتاب با سوئيچ و نحوه عملکرد آن در شبکه به خوبی آشنا می شوید .

 

 

ادامه مطلب

لایه Network در شبکه

لایه Network در شبکه

لایه Network در شبکه

لایه Network در شبکه

این لایه وظيفه مسيریابی و هدایت ترافيک را به عهده دارد . درواقع وظيفه انتخاب بهترین مسير درميان مسيرهای متفاوت به عهده این لایه می باشد. روتر به عنوان یک Device لایه سوم وظيفه مسيریابی و هدایت ترافيک را به عهده دارد . هدایت ترافيک در این لایه براساس پروتکل ها و الگوریتم های مسيریابی متفاوتی صورت می گيرد. در این لایه آدرس دهی بسته ها براساس پروتکل IP ، IPX و یا talk Apple صورت می گيرد. دراین لایه هيچگونه پيگيری جهت رسيدن و یا نرسيدن بسته ها صورت نمی گيرد . درواقع وظيفه پيگيری رسيدن بسته ها به مقصد به عهده این لایه نخواهد بود بلکه وظيفه لایه بالاتر ( Transport ( می باشد . در فصل آشنایی با روشهای مسيریابی با پروتکل های این لایه و عملکرد هر کدام از آنها به تفسير آشنا خواهيد شد.

ادامه مطلب

لایه Transport در شبکه

لایه Transport در شبکه

لایه Transport در شبکه

لایه Transport در شبکه

لایه چهارم وظيفه برقراری یک ارتباط end-to-end را به عهده دارد . درواقع این لایه ، وظيفه کنترل ارتباط برقرار شده را به عهده دو Station نهایی می گذارد و آمادگی Station نهایی را برای دریافت ترافيک بررسی می کند و پس از برقراری ارتباط توسط لایه چهارم، ترافيک هدایت خواهد شد . User Data بعد از تحویل به لایه چهارم در بسته های استانداردی به نام سگمنت بسته بندی (Encapsulate) می شود . ساختار سگمنت و وظایف لایه چهارم به تفسير در پایان این ماژول شرح داده می شود .

 

 

ادامه مطلب

لایه Session در شبکه

لایه Session در شبکه

لایه Session در شبکه

لایه Session در شبکه

این لایه وظيفه برقراری شرایط یک Session بين دو Station نهایی را به عهده دارد. وظيفه تأیيد هویت (Authentication ( و برقراری یک Session و مدیریت یک Session و درنهایت اتمام session و بررسی حساب (Accounting) را به عهده دارد . پس از برقراری یک Session ، اطلاعات تحویل لایه چهارم داده می شود . اطلاعاتی که از این سه لایه گذشته و تحویل لایه چهارم داده می شود ، Data User گفته می شود و پس از تحویل به لایه چهارم به قطعات استاندارد شکسته شده و در واقع بسته بندی می شوند .

 

ادامه مطلب